MATHEMATICS

Chapter 10: STRAIGHT LINES

Important Questions

Multiple Choice questions-

Question 1. In a \triangle ABC, if A is the point (1, 2) and equations of the median through B and C are respectively x + y = 5 and x = 4, then B is

- (a) (1, 4)
- (b) (7, -2)
- (c) none of these
- (d) (4, 1)

Question 2. The equation of straight line passing through the point (1, 2) and perpendicular to the line x + y + 1 = 0

- (a) y x + 1 = 0
- (b) y x 1 = 0
- (c) y x + 2 = 0
- (d) y x 2 = 0

Question 3. The points (-a, -b), (0, 0), (a, b) and (a^2, ab) are

- (a) vertices of a square
- (b) vertices of a parallelogram
- (c) collinear
- (d) vertices of a rectangle

Question 4. The equation of the line through the points (1, 5) and (2, 3) is

- (a) 2x y 7 = 0
- (b) 2x + y + 7 = 0
- (c) 2x + y 7 = 0
- (d) x + 2y 7 = 0

Question 5. The slope of a line which passes through points (3, 2) and (-1, 5) is

- (a) 3/4
- (b) -3/4
- (c) 4/3

(d) -4/3

Question 6. The ratio of the 7th to the $(n-1)^{th}$ mean between 1 and 31, when n arithmetic means are inserted between them, is 5:9. The value of n is

- (a) 15
- (b) 12
- (c) 13
- (d) 14

Question 7. The ortho centre of the triangle formed by lines xy = 0 and x + y = 1 is :

- (a) (0, 0)
- (b) none of these
- (c) (1/2, 1/2)
- (d) (1/3, 1/3)

Question 8. Two lines $a_1 x + b_1 y + c_1 = 0$ and $a_2 x + b_2 y + c_2 = 0$ are parallel if

- (a) $a_1/a_2 = b_1/b_2 \neq c_1/c_2$
- (b) $a_1/a_2 \neq b_1/b_2 = c_1/c_2$
- (c) $a_1/a_2 \neq b_1/b_2 \neq c_1/c_2$
- (d) $a_1/a_2 = b_1/b_2 = c_1/c_2$

Question 9. If the line x/a + y/b = 1 passes through the points (2, -3) and (4, -5), then (a, b) is

- (a) a = 1 and b = 1
- (b) a = 1 and b = -1
- (c) a = -1 and b = 1
- (d) a = -1 and b = -1

Question 10. The angle between the lines x - 2y = y and y - 2x = 5 is

- (a) $tan^{-1}(1/4)$
- (b) $tan^{-1}(3/5)$
- (c) tan⁻¹ (5/4)
- (d) $tan^{-1}(2/3)$

Very Short Questions:

- 1. Find the slope of the lines passing through the point (3,-2) and (-1,4)
- **2.** Three points P(h,k), $Q(x_1,y_1)$ and $R(x_2,y_2)$ lie on a line. Show that $(h-x_1)(y_2-y_1)=(k-y_1)(x_2-x_1)$

MATHEMATICS STRAIGHT LINES

- 3. Write the equation of the line through the points (1, -1) and (3, 5)
- **4.** Find the measure of the angle between the lines x + y + 7 = 0 and x y + 1 = 0.
- **5.** Find the equation of the line that has y-intercept 4 and is \perp to the line y = 3x 2.
- **6.** Find the equation of the line, which makes intercepts -3 and 2 on the x and y-axis respectively.
- 7. Equation of a line is 3x 4y + 10 = 0 find its slope.
- **8.** Find the distance between the parallel lines 3x 4y + 7 = 0 and 3x 4y + 5 = 0.
- 9. Find the equation of a straight line parallel to y-axis and passing through the point (4,-2)
- **10.** If 3x by + 2 = 0 and 9x + 3y + a = 0 represent the same straight line, find the values of a and b.

Short Questions:

1. If p is the length of the from the — origin on the line whose intercepts on the axes are a and b. show that

$$\frac{1}{p^2} = \frac{1}{a^2} + \frac{1}{b^2}$$

- 2. Find the value of p so that the three lines 3x + y 2 = 0, px + 2y 3 = 0 and may intersect at one point.
- **3.** Find the equation to the straight line which passes through the point (3,4) and has intercept on the axes equal in magnitude but opposite in sign.
- **4.** By using area of Δ . Show that the points (a, b + c), and (c, a + b) are collinear.
- **5.** Find the slope of a line, which passes through the origin, and the midpoint of the line segment joining the point p(0, 4) and Q(8, 0)

Long Questions:

- **1.** Find the values of for the line $(k-3)x (4 k^2)y + k^2 7k + 6 = 0$
 - (a). Parallel to the x-axis
 - (b). Parallel to y-axis
 - (c). Passing through the origin.
- **2.** If p and q are the lengths of \perp from the origin to the lines.

$$x\cos\theta - y\sin\theta = k\cos 2\theta$$
, and $x\sec\theta + y\cos ec\theta = k$ respectively, prove that $p^2 + 4q^2 = k^2$

- **3.** Prove that the product of the \perp drawn from the points $(\sqrt{a^2-b^2},0)$ and $(-\sqrt{a^2-b^2},0)$ to the line.
- **4.** Find equation of the line mid way between the parallel lines 9x + 6y 7 = 0 and 3x + 2y + 6 = 0.

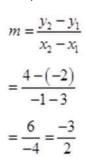
MATHEMATICS STRAIGHT LINES

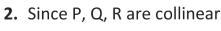
5. Assuming that straight lines work as the plane mirror for a point, find the image of the point (1,2) in the line x - 3y + 4 = 0.

Assertion Reason Questions:

- 1. In each of the following questions, a statement of Assertion is given followed by a corresponding statement of Reason just below it. Of the statements, mark the correct answer as.
 - **Assertion (A):** The point (3, 0) is at 3 units distance from the Y-axis measured along the positive X-axis and has zero distance from the X-axis.
 - **Reason (R):** The point (3, 0) is at 3 units distance from the X -axis measured along the positive Y -axis and has zero distance from the Y -axis.
 - (i) Both assertion and reason are true and reason is the correct explanation of assertion.
 - (ii) Both assertion and reason are true but reason is not the correct explanation of assertion.
 - (iii) Assertion is true but reason is false.
 - (iv) Assertion is false but reason is true.
- 2. In each of the following questions, a statement of Assertion is given followed by a corresponding statement of Reason just below it. Of the statements, mark the correct answer as.
 - Assertion (A): Slope of X -axis is zero and slope of Y -axis is not defined.
 - Reason (R): Slope of X -axis is not defined and slope of Y -axis is zero.
 - (i) Both assertion and reason are true and reason is the correct explanation of assertion.
 - (ii) Both assertion and reason are true but reason is not the correct explanation of assertion.
 - (iii) Assertion is true but reason is false.
 - (iv) Assertion is false but reason is true.

Answer Key:


MCQ


- **1.** (b) (7, -2)
- **2.** (b) y x 1 = 0
- **3.** (c) collinear
- **4.** (c) 2x + y 7 = 0
- **5.** (b) -3/4

- **6.** (d) 14
- **7.** (a) (0, 0)
- **8.** (a) $a_1/a_2 = b_1/b_2 \neq c_1/c_2$
- **9.** (d) a = -1 and b = -1
- **10.**(c) tan⁻¹ (5/4)

Very Short Answer:

1. Slope of line through (3,-2) and (-1, 4)

Slope of PQ = slope of QR

$$\frac{y_1 - k}{x_1 - h} = \frac{y_2 - y_1}{x_2 - x_1}$$

$$\frac{\frac{1}{2}(k-y_1)}{\frac{1}{2}(k-x_1)} = \frac{y_2 - y_1}{x_2 - x_1}$$

$$(h-x_1)(y_2-y_1)=(k-y_1)(x_2-x_1)$$

3.

$$y-y_1 = \frac{y_2-y_1}{x_2-x_1} \left(x-x_1 \right)$$
 Req. eq.

$$y+1=\frac{5+1}{2}(x-1)$$

$$-3x + y + 4 = 0$$

4.

$$x + y + 7 = 0$$

$$m_1 = \frac{-1}{1}$$

$$x - y + 1 = 0$$

$$m_2 = \frac{-1}{-1} = 1$$

Slopes of the two lines are 1 and -1 as product of these two slopes is -1, the lines are at right angles.

5.

$$y = 3x - 2$$

Slope
$$(m) = \frac{-3}{-1} = 3$$
, slope of any line \perp it is $-\frac{1}{3}$

$$C = 4$$

Req. eq. is
$$y = mx + c$$

$$y = \frac{-1}{3}x + 4$$

6.

Req. eq.
$$\frac{x}{a} + \frac{y}{b} = 1$$

$$a = -3, b = 2$$

$$\therefore \frac{x}{-3} + \frac{y}{2} = 1$$

$$2x - 3y + 6 = 0$$

7.

$$m = \frac{-\text{coff. of } x}{\text{coff. of } y}$$

$$=\frac{-3}{-4}=\frac{3}{4}$$

8.

$$A = 3, B = -4, C_1 = 7$$
 and $C_2 = 5$

$$d = \frac{|C_1 - C_2|}{\sqrt{a^2 + b^2}}$$

$$=\frac{|7-5|}{\sqrt{(3)^2+(-4)^2}}$$

$$=\frac{2}{5}$$

9.

Equation of line parallel to y-axis is x = a....(i)

Eq.
$$(i)$$
 passing through (-4,2)

$$a = -4$$

$$S_0 x = -4$$

$$x + 4 = 0$$

10.

ATQ

$$\frac{3}{9} = \frac{-b}{3} = \frac{2}{a}$$

$$b = -1$$

$$\Rightarrow a = 6$$

Short Answer:

1. Equation of the line is

$$\frac{x}{a} + \frac{y}{b} = 1$$

$$\Rightarrow \frac{x}{a} + \frac{y}{b} - 1 = 0$$

The distance of this line from the origin is P

$$\therefore P = \frac{\left| \frac{0}{a} + \frac{0}{b} - 1 \right|}{\sqrt{\left(\frac{1}{a}\right)^2 + \left(\frac{1}{b}\right)^2}}$$

$$d = \frac{|ax + by + c|}{\sqrt{a^2 + b^2}}$$

$$\frac{P}{1} = \frac{1}{\sqrt{\frac{1}{a^2} + \frac{1}{b^2}}}$$

$$\frac{1}{P} = \sqrt{\frac{1}{a^2} + \frac{1}{b^2}}$$

Sq. both side

$$\frac{1}{P^2} = \frac{1}{a^2} + \frac{1}{b^2}$$

2.

$$3x + y - 2 = 0$$
.....(i)

$$px + 2y - 3 = 0$$
.....(ii)

$$2x - y + 3 = 0.....(iii)$$

On solving eq. (i) and (iii)

$$x = 1$$
, And $y = -1$

Put x, y in eq. (ii)

$$P(1) + 2(-1) - 3 = 0$$

$$p-2-3=0$$

$$p = 5$$

3.

Let intercept be a and –a the equation of the line is

$$\frac{x}{a} + \frac{y}{-a} = 1$$

$$\Rightarrow x - y = a.....(i)$$

Since it passes through the point (3, 4)

$$3 - 4 = a$$

$$a = -1$$

Put the value of a in eq. (i)

$$x - y = -1$$

$$x - y + 1 = 0$$

4.

Area of
$$\Delta = \frac{1}{2} |x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)|$$

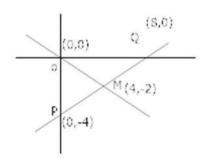
$$= \frac{1}{2} |a(c+a) - b(b+c) + b(a+b) - c(c+a) + c(b+c) - a(a+b)|$$

$$=\frac{1}{2}.0=0$$

5.

$$M = \left(\frac{0+8}{2}, \frac{-4+0}{2}\right)$$

Let m be the midpoint of segment PQ then


$$=(4,-2)$$

$$OM = \frac{y_2 - y_1}{x_2 - x_1}$$

Slope of

$$x_2 - x_1$$

$$=\frac{-2-0}{4-0}=\frac{-1}{2}$$

Long Answer:

1. (a) The line parallel to x-axis if coeff. Of x=0

$$k - 3 = 0$$

k = 3

(b) The line parallel to y-axis if coeff. Of y=0

$$4 - k^2 = 0$$

$$k = \pm 2$$

(c) Given line passes through the origin if (0, 0) lies on given eq.

$$(k-3) \cdot (0) - (4-k^2)(0) + k^2 - 7k + 6 = 0$$

$$(k-6)(k-1)=0$$

$$k = 6.1$$

2.

$$P = \frac{|0.\cos\theta - 0\sin\theta - k\cos 2\theta|}{\sqrt{(\cos\theta)^2 + (-\sin\theta)^2}} \begin{bmatrix} \bot \text{ from origin} \\ \because (0,0) \end{bmatrix}$$

$$P = K \cos 2\theta(i)$$

$$q = \frac{|0.\sec\theta + 0\cos ec\theta - k|}{\sqrt{\sec^2\theta + \cos ec^2\theta}}$$

$$= \frac{K}{\sqrt{\frac{1}{\cos^2 \theta} + \frac{1}{\sin^2 \theta}}}$$

$$= \frac{k\cos\theta \cdot \sin\theta}{\sqrt{\sin^2\theta + \cos^2\theta}} = \frac{1}{2}k \cdot \sin\theta \cdot \cos\theta$$

$$2q = k \cdot \sin 2\theta \cdot \dots \cdot (ii)$$

Squaring (i) and (ii) and adding

$$P^2 + (2q)^2 = K^2 \cos^2 2\theta + K^2 \sin^2 2\theta$$

$$P^{2} + 4q^{2} = K^{2} (\cos^{2} 2\theta + \sin^{2} 2\theta)$$

 $p^{2} + 4q^{2} = k^{2}$

3. Let

$$p_1 = \frac{\left| \frac{\sqrt{a^2 - b^2}}{a} \cdot \cos \theta - 1 \right|}{\sqrt{\left(\frac{\cos \theta}{a}\right)^2 + \left(\frac{\sin \theta}{b}\right)^2}} \left[\because \bot \text{ from the points } \sqrt{a^2 - b^2}, 0 \right]$$

Similarly p_2 be the distance $\left(-\sqrt{a^2-b^2},0\right)$ from to given line

$$p_2 = \frac{\left| -\frac{\sqrt{a^2 - b^2}}{a} \cos \theta - 1 \right|}{\sqrt{\left(\frac{\cos \theta}{a}\right)^2 + \left(\frac{\sin \theta}{b}\right)^2}}$$

$$p_{1}p_{2} = \frac{\left[\frac{\sqrt{a^{2} - b^{2}}}{a}\cos\theta - 1\right]\left(-\frac{\sqrt{a^{2} - b^{2}}}{a}\cos\theta - 1\right)}{\frac{\cos^{2}\theta}{a^{2}} + \frac{\sin^{2}\theta}{b^{2}}}$$

$$=\frac{\left[\frac{a^2-b^2}{a^2}\right]\cdot\cos^2\theta-1}{\frac{b^2\cos^2\theta+a^2\sin^2\theta}{a^2b^2}}$$

$$= \frac{\left| a^2 \cos^2 \theta - b^2 \cos^2 \theta - a^2 \right| a^2 b^2}{a^2 (a^2 \sin^2 \theta + b^2 \cos^2 \theta)}$$

$$a^{2}(a^{2}\sin^{2}\theta + b^{2}\cos^{2}\theta)$$

$$= \frac{\left| -(a^{2}\sin^{2}\theta + b^{2}\cos^{2}\theta) \right| b^{2}}{a^{2}\sin^{2}\theta + b^{2}\cos^{2}\theta} \qquad \left[\because a^{2}\cos^{2}\theta - a^{2} = a^{2}(\cos^{2}\theta - 1) \right]$$

$$=\frac{(a^2\sin^2\theta+b^2\cos^2\theta)\ b^2}{a^2\sin^2\theta+b^2\cos^2\theta}$$

 $=b^{2}$

4.

The equations are

$$9x + 6y - 7 = 0$$

$$3\left(3x+2y-\frac{7}{3}\right)=0$$

$$3x + 2y - \frac{7}{3} = 0.....(i)$$

$$3x + 2y + 6 = 0....(ii)$$

Let the eq. of the line mid way between the parallel lines (i) and (ii) be

$$3x + 2y + k = 0.....(iii)$$

ATQ

Distance between (i) and (iii) = distance between (ii) and (iii)

$$\left| \frac{K + \frac{7}{3}}{\sqrt{9 + 4}} \right| = \left| \frac{K - 6}{\sqrt{9 + 4}} \right| \left[\because d = \frac{\left| c_1 - c_2 \right|}{\sqrt{a^2 + b^2}} \right]$$

$$K + \frac{7}{3} = K - 6$$

$$K = \frac{11}{6}$$

Req. eq. is

$$3x + 2y + \frac{11}{6} = 0$$

5.

Let Q(h, k) is the image of the point p(1, 2) in the line.

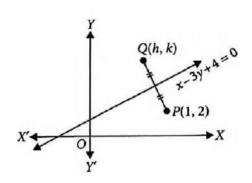
$$x-3y+4=0....(i)$$

 $PQ = \left(\frac{h+1}{2}, \frac{k+2}{2}\right)$ Coordinate of midpoint of

This point will satisfy the eq.(i)

$$\left(\frac{h+1}{2}\right) - 3\left(\frac{k+2}{2}\right) + 4 = 0$$

$$h-3k=-3.....(i)$$


(Slope of line PQ) × (slope of line x - 3y + 4 = 0) = -1

$$\left(\frac{k-2}{h-1}\right)\left(\frac{-1}{-3}\right) = -1$$

$$3h + k = 5.....(ii)$$

On solving (i) and (ii)

$$h = \frac{6}{5}$$
 and $k = \frac{7}{5}$

Assertion Reason Answer:

- 1. (iii) Assertion is true but reason is false.
- 2. (iii) Assertion is true but reason is false.

