MATHEMATICS

Chapter 10: Visualising Solid Shapes

Important Questions

Multiple Choice Questions-

Question 1. The name of the shape is

- (a) cylinder
- (b) square
- (c) circle
- (d) triangle.

Question 2. The name of the shape is

- (a) sphere
- (b) cylinder
- (c) cone
- (d) triangle.

Question 3. The name of the shape is

- (a) cone
- (b) sphere
- (c) cuboid
- (d) cylinder.

Question 4. The name of the shape

wotters

- (a) triangle
- (b) cone
- (c) cylinder
- (d) sphere

Question 5. The name of the shape is

- (a) cone
- (b) circle
- (c) cylinder
- (d) cube.

Question 6. The name of the shape is

- (a) cuboid
- (b) cube
- (c) square
- (d) cylinder.

Question 7. The name of the shape is

- (a) cube
- (b) cuboid
- (c) sphere
- (d) square.

Question 8. The name of the shape is

- (a) circle
- (b) sphere
- (c) cylinder
- (d) cone.

Question 9. A cuboid has how many faces?

- (a) 2
- (b) 4
- (c) 6
- (d) 3.

Question 10. How many faces does a cube have?

- (a) 6
- (b) 4
- (c)3
- (d) 2.

Very Short Questions:

- **1.** Draw any four 3-dimensional figures.
- 2. Verify Euler's formula for a right triangular prism.

- Triangular prism
- **3.** Find the number of vertices of hexagonal prisms.
- **4.** Verify whether a polyhedron can have 10 faces, 20 edges and 15 vertices.
- 5. If F = 18 and V = 10, then find the value of E in Euler's formula.

Short Questions:

1. Draw the front, side and top views of the following 3-D figures.

- **2.** Draw the nets of the following polyhedrons.
 - (i) Cuboid
 - (ii) Triangular prism with a base equilateral triangle.
 - (iii) Square pyramid.
- **3.** The given net is made up of two equilateral triangles and three rectangles.

- (i) Name the solid it represents.
- (ii) Find the number of faces, edges and vertices.
- 4. Using Euler's formula, fill in the blanks:

	Faces	Vertices	Edges
(a)	6	8	_
(b)	_	10	15
(c)	4	utte	13 6
(d)	5	6	_
(e)	8	12	_
(f)	7	7	_

- **5.** Name the solids that have:
 - (i) 4 faces

- (ii) 8 triangular faces
- (iii) 6 faces
- (iv) 1 curved surface
- (v) 5 faces and 5 vertices
- (vi) 6 rectangular faces and 2 hexagonal faces

Long Questions:

1. Complete the table:

2. Use isometric dot paper to sketch a rectangular prism with length 4 units, height 2 units and width 3 units.

3. Identify the given views of the block:

Answer Key-

Multiple Choice questions-

- **1.** (b) square
- **2.** (c) cone
- 3. (d) cylinder
- 4. (a) triangle
- **5.** (b) circle
- **6.** (b) cube
- **7.** (b) cuboid
- 8. (b) sphere
- **9.** (c) 6
- **10.** (a) 6

Very Short Answer:

1.

2. Number of vertices (V) = 6

Number of faces (F) = 5

and number of edges (E) = 9

Euler's formula:

$$V + F - E = 2$$

$$\Rightarrow$$
 6 + 5 - 9 = 2

$$\Rightarrow$$
 2 = 2

Hence, the formula is verified.

- 3. Number of vertices = $2 \times \text{Number of sides} = 2 \times 6 = 12$
- **4.** We have

Number of faces F = 10

Number of edges E = 20

and number of vertices V = 15

Euler's formula:

$$V + F - E = 2$$

$$\Rightarrow$$
 15 + 10 - 20 = 2

$$\Rightarrow$$
 5 \neq 2

Hence, it is not possible to have a polyhedron satisfying the above data.

5. We know that

$$V + F - E = 2$$

$$\Rightarrow$$
 10 + 18 - E = 2

$$\Rightarrow$$
 28 – E = 2

$$\Rightarrow$$
 E = 28 - 2 = 26

Hence, the required value of E = 26

Short Answer:

1.

Front view

Side view

Top view

Front view Side view

Top view

2. (i) The net pattern of cuboid

(ii) The net pattern of a triangular prism

(iii) Net pattern of square pyramid

- 3. (i) The given figure represents the net prims of the triangular prism
 - (ii) Number of faces = 5

Number of edges = 9

Number of vertices = 6

4. (a)
$$F + V - E = 2$$

$$\Rightarrow$$
 6 + 8 - E = 2

$$\Rightarrow$$
 14 – E = 2

$$\Rightarrow$$
 E = 14 - 2 = 12

(b)
$$F + V - E = 2$$

$$\Rightarrow$$
 F + 10 - 15 = 2

$$\Rightarrow$$
 F - 5 = 2

$$\Rightarrow$$
 F = 2 + 5 = 7

(c)
$$F + V - E = 2$$

$$\Rightarrow$$
 4 + V - 6 = 2

$$\Rightarrow$$
 V $-$ 2 = 2

$$\Rightarrow$$
 V = 2 + 2 = 4

(d)
$$F + V - E = 2$$

$$\Rightarrow$$
 5 + 6 - E = 2

$$\Rightarrow$$
 11 – E = 2

$$\Rightarrow$$
 E = 11 - 2 = 9

(e)
$$F + V - E = 2$$

$$\Rightarrow$$
 8 + 12 - E = 2

$$\Rightarrow$$
 20 – E = 2

$$\Rightarrow$$
 E = 20 - 2 = 18

(f)
$$F + V - E = 2$$

$$\Rightarrow$$
 7 + 7 - E = 2

$$\Rightarrow$$
 14 – E = 2

$$\Rightarrow$$
 E = 14 - 2 = 12

Hence (a) \rightarrow 12, (b) \rightarrow 7, (c) \rightarrow 4, (d) \rightarrow 9, (e) \rightarrow 18, (f) \rightarrow 12.

- 5. (i) Tetrahedron
 - (ii) Regular octahedron
 - (iii) Cube and cuboid
 - (iv) Cylinder
 - (v) Square and a rectangular pyramid
 - (vi) Hexagonal prism

Long Answer:

1.

Solid	F	v	E	F + V	E + 2
Cuboid	6	8	12	14	14
Triangular pyramid	4	14 1	6	8	8
Triangular prism	5	6	9	11	11
Pyramid with square base	5	5	8	10	10

Prism with square	6	8	12	14	14
base					

2. Steps:

1. Draw a parallelogram with sides 4 units and 3 units. This is the top of the prism (Fig. 1).

2. Start at one vertex. Draw a line passing through two dots. Repeat for the other three vertices. Draw the hidden edges as a dashed line (Fig. 2).

3. Connect the ends of the lines to complete the prism (Fig. 3).

3.

- a. Left View
- b. Top View
- c. Right View
- d. Front View.