MATHEMATICS

Chapter 11: CONIC SECTIONS

Important Questions

Multiple Choice questions-

Question 1. The straight line y = mx + c cuts the circle $x^2 + y^2 = a^2$ in real points if

(a)
$$\sqrt{a^2 \times (1 + m^2)} < c$$

(b)
$$\sqrt{a^2 \times (1 - m^2)} < c$$

(c)
$$\sqrt{a^2 \times (1 + m^2)} > c$$

(d)
$$V{a^2 \times (1 - m^2)} > c$$

Question 2. Equation of the directrix of the parabola $x^2 = 4ay$ is

(a)
$$x = -a$$

(b)
$$x = a$$

(c)
$$y = -a$$

$$(d) y = a$$

Question 3. The equation of parabola with vertex at origin and directrix x - 2 = 0 is

(a)
$$y^2 = -4x$$

(b)
$$y^2 = 4x$$

(c)
$$y^2 = -8x$$

(d)
$$y^2 = 8x$$

Question 4. The perpendicular distance from the point (3, -4) to the line 3x - 4y + 10 = 0

Question 5. The equation of a hyperbola with foci on the x-axis is

(a)
$$x^2/a^2 + y^2/b^2 = 1$$

(b)
$$x^2/a^2 - y^2/b^2 = 1$$

(c)
$$x^2 + y^2 = (a^2 + b^2)$$

(d)
$$x^2 - y^2 = (a^2 + b^2)$$

Question 6. If the line $2x - y + \lambda = 0$ is a diameter of the circle $x^2 + y^2 + 6x - 6y + 5 = 0$ then λ

- (a) 5
- (b) 7
- (c)9
- (d) 11

Question 7. The number of tangents that can be drawn from (1, 2) to $x^2 + y^2 = 5$ is

- (a) 0
- (b) 1
- (c) 2
- (d) More than 2

Question 8. The equation of the circle $x^2 + y^2 + 2gx + 2fy + c = 0$ will represent a real circle if

- (a) $g^2 + f^2 c < 0$
- (b) $g^2 + f^2 c \ge 0$
- (c) always
- (d) None of these

Question 9. The equation of parabola whose focus is (3, 0) and directrix is 3x + 4y = 1 is

- (a) $16x^2 9y^2 24xy 144x + 8y + 224 = 0$
- (b) $16x^2 + 9y^2 24xy 144x + 8y 224 = 0$
- (c) $16x^2 + 9y^2 24xy 144x 8y + 224 = 0$
- (d) $16x^2 + 9y^2 24xy 144x + 8y + 224 = 0$

Question 10. If the parabola $y^2 = 4ax$ passes through the point (3, 2), then the length of its latusrectum is

- (a) 2/3
- (b) 4/3
- (c) 1/3
- (d) 4

Short Questions:

- 1. Show that the equation $x^2 + y^2 6x + 4y 36 = 0$ represent a circle, also find its centre & radius?
- **2.** Find the equation of an ellipse whose foci are $(\pm 8, 0)$ & the eccentricity is $\frac{1}{4}$?
- 3. Find the equation of an ellipse whose vertices are $(0, \pm 10)$ & $e = \frac{4}{5}$

MATHEMATICS CONIC SECTIONS

- **4.** Find the equation of hyperbola whose length of latus rectum is 36 & foci are $(0, \pm 12)$
- **5.** Find the equation of a circle drawn on the diagonal of the rectangle as its diameter, whose sides are

$$x = 6$$
, $x = -3$, $y = 3$ & $y = -1$

- **6.** Find the coordinates of the focus & vertex, the equations of the diretrix & the axis & length of latus rectum of the parabola x = -8y.
- 7. Show that the equation $6x^2 + 6y^2 + 24x 36y 18 = 0$ represents a circle. Also find its centre & radius.
- 8. Find the equation of the parabola with focus at F(5, 0) & directrix is x = -5. x = -5.
- **9.** Find the equation of the hyperbola with centre at the origin, length of the transverse axis 18 & one focus at (0,4)
- **10.** Find the equation of an ellipse whose vertices are $(0, \pm 13)$ & the foci are $(0, \pm 5)$

Long Questions:

- 1. Find the length of major & minor axis-coordinate's of vertices & the foci, the eccentricity & length of latus rectum of the ellipse $16x^2 + y^2 = 16$
- 2. Find the lengths of the axis, the coordinates of the vertices & the foci the eccentricity & length of the lat us rectum of the hyperbola $25x^2 9y^2 = 225$.
- **3.** Find the area of the triangle formed by the lines joining the vertex of the parabola $x^2 = 12y$ to the ends of its latus rectum.
- **4.** A man running in a race course notes that the sum of the distances of the two flag posts from him is always 12 m & the distance between the flag posts is 10 m. find the equation of the path traced by the man.
- **5.** An equilateral triangle is inscribed in the parabola $y^2 = 4ax$ so that one angular point of the triangle is at the vertex of the parabola. Find the length of each side of the triangle.

Answer Key:

MCQ:

1. (c)
$$\sqrt{a^2 \times (1 + m^2)} > c$$

2. (c)
$$y = -a$$

3. (c)
$$y^2 = -8x$$

5. (b)
$$x^2/a^2 - y^2/b^2 = 1$$

8. (b)
$$g^2 + f^2 - c \ge 0$$

9. (d)
$$16x^2 + 9y^2 - 24xy - 144x + 8y + 224 = 0$$

Short Answer:

1. This is of the form

where
$$2g = -6$$
, $2f = 4$ & $x^2 + y^2 + 2gx + 2Fy + c = 0$,

$$\therefore q = -3, f = 2 \& c = -36$$

So, centre of the circle =(-g,-f)=(3,-2)

&

Radius of the circle
$$= \sqrt{q^2 + f^2 - c} = \sqrt{9 + 4 + 36}$$

2. Let the required equation of the ellipse be

the required equation of the ellipse be
$$(\frac{x}{a^2} + \frac{y^2}{b^2} = 1$$
, where $a^2 > b^2$

let the foci be $(\pm c, 0), c = 8$

&

$$e = \frac{c}{a} \Leftrightarrow a = \frac{c}{e} = \frac{8}{\frac{1}{4}} = 32$$

Now
$$c^2 = a^2 - b^2 \Leftrightarrow b^2 = a^2 - c^2 = 1024 - 64 = 960$$

$$\therefore a^2 = 1024 \& b^2 = 960$$

Hence equation is

$$\frac{x^2}{1024} + \frac{y^2}{960} = 1$$

3. Let equation be

$$\frac{x^2}{b^2} + \frac{y^2}{a^2} = 1$$
 www.swottersacademy.com

& its vertices are $(0,\pm a)$ & a=10

Let

$$c^2 = a^2 - b^2$$

$$e = \frac{c}{a} \implies c = ae = 10 \times \frac{4}{5} = 8$$
Then

Now

$$c^{2} = a^{2} - b^{2} \Leftrightarrow b^{2} = (a^{2} - c^{2}) = 100 - 64 = 36$$

$$\therefore a^{2} = (10)^{2} = 100 \& b^{2} = 36$$

Hence the equation is

$$\frac{x^2}{36} + \frac{y^2}{100} = 1$$

Length of cat us rectum = $36 \Leftrightarrow \frac{2b^2}{a} = 36$

$$\Rightarrow b^2 = 18a$$

Now
$$c^2 = a^2 + b^2 \Leftrightarrow a^2 = c^2 - b^2 = 144 - 18a$$

$$a^2 + 18a - 144 = 0$$

$$(a+24)(a-6)=0 \Leftrightarrow a=6$$
 [: a is non negative]

This
$$a^2 = 6^2 = 36$$
 & $b^2 = 108$

Hence,
$$\frac{x^2}{36} + \frac{y^2}{108} = 1$$

5.

Let ABCD be the given rectangle & AD = x = -3, BC = x = 6, AB = y = -1 & CD = y = -3

Then A(-3,-1) & c(6,3)

So the equation of the circle with AC as diameter is given as

$$(x+3)(x-6) + (y+1)(y-3) = 0$$

$$\Rightarrow x^2 + y^2 - 3x - 2y - 21 = 0$$

6.

$$x^2 = -8y$$

So,
$$4a = 8 \Leftrightarrow a = 2$$

So it is case of downward parabola

o, foci is
$$F(0,-a)$$
 ie $F(0,-2)$

Its vertex is 0(0,0)

So,
$$y = a = 2$$

Its axis is y - axis, whose equation is x = 0 length of lotus centum

$$= 4a = 4 \times 2 = 8$$
 units.

7.

$$6x^2 + 6y^2 + 24x - 36y + 18 = 0$$

So
$$x^2 + y^2 + 4x - 6y + 3 = 0$$

Where,
$$2g = 4, 2f = -6 \& C = 3$$

$$g = 2, f = -3 & C = 3$$

Hence, centre of circle = (-g, -f) = (-2, 3)

&

Radius of circle
$$=\sqrt{4+9+9}=\sqrt{20}$$

$$=2\sqrt{5}$$
 units

8. Focus F (5, 0) lies to the right hand side of the origin

So, it is right hand parabola.

Let the required equation be

$$y^2 = 4ax \& a = 5$$

So,
$$y^2 = 20x$$

9. Let its equation be $\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1$

Clearly, C = 4.

length of the transverse axis = $8 \Leftrightarrow 2a = 18$

$$a = 9$$

Also,

$$b^2 = c$$
: $C^2 = (a^2 + b^2)$

So,
$$a^2 = 81 \& b^2 = -65$$

So, equation is

$$\frac{y^2}{81} + \frac{x^2}{65} = 1$$
 equation be $\frac{x^2}{b^2} + \frac{y^2}{a^2} = 1$

Let its foci be $(0, \pm c)$ then c = 5

$$b^2 = a^2 - c^2 = 169 - 25 = 144$$

So,
$$a^2 = 169 \& b^2 = 144$$

So, equation be $\frac{x^2}{144} + \frac{y^2}{169} = 1$

Long Answer:

1. $16x^2 + y^2 = 16$

Dividing by 16,

$$x^2 + \frac{y^2}{16} = 1$$

$$s_0 b^2 = 1 \& a^2 = 16 \& b = 1 \& a = 4$$

ጼ

$$c = \sqrt{a^2 - b^2} = \sqrt{16 - 1}$$

$$=\sqrt{15}$$

Thus a = 4, b = 1 & $c = \sqrt{15}$

(i)Length of major axis = $2a = 2 \times 4 = 8$ units

Length of minor axis = $2b = 2 \times 1 = 2$ units

- (ii) Coordinates of the vertices are A(-a,0) & B(a,0) ie A(-4,0) & B(4,0)
- (iii) Coordinates of foci are $F_1(-c,0)$ & $F_2(c,0)$ ie $F_1(-\sqrt{15},0)$ & $F_2(\sqrt{15},0)$
 - (iv)Eccentricity, $e = \frac{c}{c} = \frac{\sqrt{15}}{4}$
- (v)Length of latus rectum = $\frac{2b^2}{a} = \frac{2}{4} = \frac{1}{2}$ units

2.

$$25x^2 - 9y^2 = 225 \Rightarrow \frac{x^2}{9} - \frac{y^2}{25} = 1$$

$$S_{0}$$
, $a^2 = 9$ & $b^2 = 25$

8.
$$c = \sqrt{a^2 + b^2} = \sqrt{9 + 25} = \sqrt{34}$$

(i) Length of transverse axis = $2a = 2 \times 3 = 6$ units

Length of conjugate axis = $2b = 2 \times 5 = 10$ units

- (ii) The coordinates of vertices are A(-a,0) & B(a,0) ie A(-3,0) & B(3,0)
- (iii) The coordinates of foci are $F_1, (-c, 0) \& F_2(c, 0) ie F_1(-\sqrt{34}, 0) \& F_2(\sqrt{34}, 0)$
- (iv) Eccentricity, $e = \frac{c}{a} = \frac{\sqrt{34}}{3}$
- (v) Length of the lat us rectum $\frac{2b^2}{a} = \frac{50}{3}$ units
- 3. The vertex of the parabola $x^2 = 12y$ ie o(0, 0)

٥	۰	1
6	3	1
-6	3	1.

Comparing $x^2 = 12y$ with $x^2 = 4ay$ we get a = 3 the coordinates of its focus S are (0, 3).

Clearly, the ends of its latus rectum are: A(-2a, a) & B (2a, a)

Let A(-6, 3) & B(6, 3)

$$\therefore$$
 are of $\triangle OBA = \frac{1}{2}$

$$=\frac{1}{2}[1\times(18+18)]$$

- = 18 units.
- 4. We know that on ellipse is the locus of a point that moves in such a way that the sum of its distances from two fixed points (caked foci) is constant.

So, the path is ellipse.

Let the equation of the ellipse be

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1,$$

where, $b^2 = a^2 (1 - c^2)$

Clearly, 2a = 12 & 2ae = 10

$$\Rightarrow a = b \& e = \frac{5}{6}$$

$$\Rightarrow b^2 = a^2 \left(1 - e^2 \right) = 36 \left(1 - \frac{25}{36} \right)$$

$$\Rightarrow b^2 = 11$$

Hence, the required equation is

$$\frac{x^2}{36} + \frac{y^2}{11} = 1$$
 triangle inscribed in the parabola $y^2 = 4ax$

5. Let $\triangle POR$ be an equilateral

Let QP = QP = QR = PR = C

Let ABC at the x-axis at M.

Then,

$$\angle PQM = \angle RQWM = 30^{\circ}$$

$$\therefore \frac{QM}{QP} = \cos 30^{\circ} \Rightarrow QM = \angle \cos 30^{\circ}$$

$$\Rightarrow \frac{L\sqrt{3}}{2}$$

$$PM = 20^{\circ} \Rightarrow PM = 20^{\circ}$$

$$\Rightarrow \frac{PM}{QP} = \sin 30^{\circ} \Rightarrow PM = \angle \sin 30^{\circ}$$

$$\Rightarrow \frac{L}{2}$$

the coordinates of are $\left[\frac{L\sqrt{3}}{2}, \frac{L}{2}\right]$

Since P lies on the parabola $y^2 = 4ax$, we have

$$l^2 = 4a \times \frac{L\sqrt{3}}{2} \Rightarrow l = 8a\sqrt{3}$$

Hence length of each side of the triangle is $8a\sqrt{3}$ units.