MATHEMATICS

Chapter 11: Perimeter and Area

Important Questions

Multiple Choice Questions-

Question 1. Perimeter of a square =

- (a) side × side
- (b) $3 \times \text{side}$
- (c) $4 \times \text{side}$
- (d) $2 \times \text{side}$

Question 2. Perimeter of a rectangle of length Z and breadth 6 is

- (a) I + b
- (b) $2 \times (1 + b)$
- (c) $3 \times (1 + b)$
- (d) $I \times b$

Question 3. Area of a square =

- (a) side × side
- (b) $2 \times side$
- (c) $3 \times \text{side}$
- (d) $4 \times \text{side}$

Question 4. Area of a rectangle of length I and breadth b is

- (a) $I \times b$
- (b) 1 + b
- (c) $2 \times (1 + b)$
- (d) $6 \times (l + b)$

Question 5. Area of a parallelogram =

- (a) base × height
- (b) $\frac{1}{2}$ × base × height
- (c) $\frac{1}{3}$ × base × height
- (d) $\frac{1}{4}$ × base × height

Question 6. Area of a triangle =

- (a) base × height
- (b) $\frac{1}{2}$ × base × height
- (c) $\frac{1}{3}$ × base × height

(d) $\frac{1}{4}$ × base × height

Question 7. The circumference of a circle of radius r is

- (a) πr
- (b) 2πr
- (c) πr^2
- (d) $\frac{1}{4} \pi r^2$

Question 8. The circumference of a circle of diameter d is

- (a) πd
- (b) 2πd
- (c) $\frac{1}{2}$ πd
- (d) πd^2

Question 9. If r and d are the radius and diameter of a circle respectively, then

- (a) d = 2 r
- (b) d = r
- (C) $d = \frac{1}{2} r$
- (d) $d = r^2$

Question 10. The area of a circle of radius r is

- (a) πr^2
- (b) $2\pi r^2$
- (c) 2πr
- (d) $4\pi r^2$

Question 11. The area of a circle of diameter d is

- (a) πd^2
- (b) $2\pi d^2$
- (c) $\frac{1}{4} \pi d^2$
- (d) 2πd

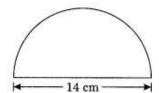
Question 12. 1 cm 2 =

- (a) 10 mm²
- (b) 100 mm²
- (c) 1000 mm²
- (d) 10000 mm²

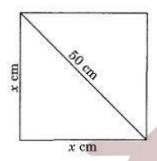
Question 13. 1 m^2 =

- (a) 10 cm²
- (b) 100 cm²
- (c) 1000 cm²
- (d) 10000 cm²

Question 14. 1 hectare =

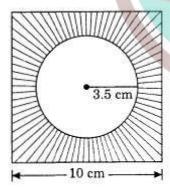

- (a) 10 m²
- (b) 100 m²
- (c) 1000 m²
- (d) 10000 m²

Question 15. 1 are =

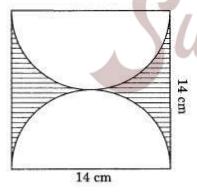

- (a) 10 m²
- (b) 100 m²
- (c) 1000 m²
- (d) 10000 m²

Very Short Questions:

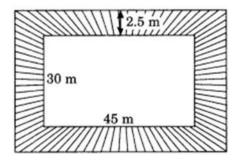
- 1. The side of a square is 2.5 cm. Find its perimeter and area.
- 2. If the perimeter of a square is 24 cm. Find its area.
- **3.** If the length and breadth of a rectangle are 36 cm and 24 cm respectively. Find
 - (i) Perimeter
 - (ii) Area of the rectangle.
- **4.** The perimeter of a rectangular field is 240 m. If its length is 90 m, find:
 - (i) it's breadth
 - (ii) it's are
- **5.** The length and breadth of a rectangular field are equal to 600 m and 400 m respectively. Find the cost of the grass to be planted in it at the rate of ≥ 2.50 per m².
- **6.** The perimeter of a circle is 176 cm, find its radius.
- 7. The radius of a circle is 3.5 cm, find its circumference and area.
- **8.** Area of a circle is 154 cm², find its circumference.
- **9.** Find the perimeter of the figure given below.

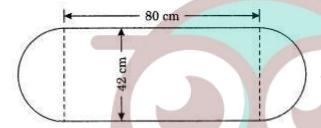


10. The length of the diagonal of a square is 50 cm, find the perimeter of the square.

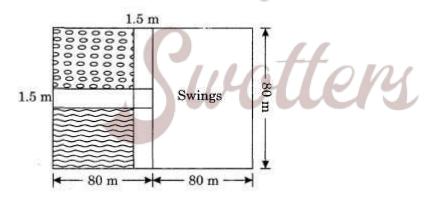


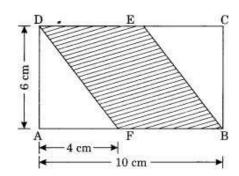
Short Questions:


- **1.** A wire of length 176 cm is first bent into a square and then into a circle. Which one will have more area?
- 2. In the given figure, find the area of the shaded portion.

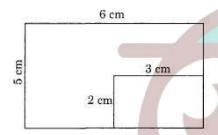

3. Find the area of the shaded portion in the figure given below.

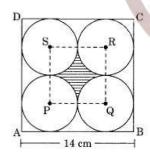
4. A rectangle park is 45 m long and 30 m wide. A path 2.5 m wide is constructed outside the park. Find the area of the path.

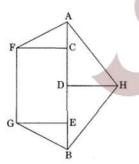

- **5.** In the given figure, calculate:
 - (a) the area of the whole figure.
 - (b) the total length of the boundary of the field.


6. How many times a wheel of radius 28 cm must rotate to cover a distance of 352 m? (Take $\pi = \frac{22}{7}$)

Long Questions:


1. A nursery school playground is 160 m long and 80 m wide. In it 80 m × 80 m is kept for swings and in the remaining portion, there are 1.5 m wide path parallel to its width and parallel to its remaining length as shown in Figure. The remaining area is covered by grass. Find the area covered by grass.


- 2. Rectangle ABCD is formed in a circle as shown in Figure. If AE = 8 cm and AD = 5 cm, find the perimeter of the rectangle.
- **3.** Find the area of a parallelogram-shaped shaded region. Also, find the area of each triangle. What is the ratio of the area of shaded portion to the remaining area of the rectangle?


4. A rectangular piece of dimension $3 \text{ cm} \times 2 \text{ cm}$ was cut from a rectangular sheet of paper of dimensions $6 \text{ cm} \times 5 \text{ cm}$. Find the ratio of the areas of the two rectangles.

5. In the given figure, ABCD is a square of side 14 cm. Find the area of the shaded region. (Take $\pi = \frac{22}{7}$)

6. Find the area of the following polygon if AB = 12 cm, AC = 2.4 cm, CE = 6 cm, AD = 4.8 cm, CF = GE = 3.6 cm, DH = 2.4 cm.

Answer Key-

Multiple Choice questions-

- **1.** (c) 4 × side
- **2.** (b) $2 \times (1 + b)$
- 3. (a) side \times side
- **4.** (a) I × b
- 5. (a) base × height
- **6.** (b) $\frac{1}{2}$ × base × height
- **7.** (b) $2\pi r$
- **8.** (a) πd
- **9.** (a) d = 2 r
- **10.** (a) πr^2
- **11.** (c) $\frac{1}{4} \pi d^2$
- **12.** (b) 100 mm²
- **13.** (d) 10000 cm²
- **14.** (d) 10000 m²
- **15.** (b) 100 m²

Very Short Answer:

1. Side of the square = 2.5 cm

Perimeter =
$$4 \times \text{Side} = 4 \times 2.5 = 10 \text{ cm}$$

Area =
$$(side)2 = (4)2 = 16 cm^2$$

2. Perimeter of the square = 24 cm

Side of the square
$$=\frac{24}{4}$$
 cm $= 6$ cm

Area of the square =
$$(Side)^2 = (6)^2 \text{ cm}^2 = 36 \text{ cm}^2$$

- 3. Length = 36 cm, Breadth = 24 cm
 - (i) Perimeter = $2(1 + b) = 2(36 + 24) = 2 \times 60 = 120$ cm
 - (ii) Area of the rectangle = $1 \times b = 36 \text{ cm} \times 24 \text{ cm} = 864 \text{ cm}^2$
- **4.** (i) Perimeter of the rectangular field = 240 m

$$2(I + b) = 240 \text{ m}$$

$$l + b = 120 \text{ m}$$

$$b = 120 \text{ m} - 90 \text{ m} = 30 \text{ m}$$

So, the breadth = 30 m.

(ii) Area of the rectangular field = $1 \times b = 90 \text{ m} \times 30 \text{ m} = 2700 \text{ m}^2$

So, the required area = 2700 m²

5. Length = 600 m, Breadth = 400 m

Area of the field = $1 \times b = 600 \text{ m} \times 400 \text{ m} = 240000 \text{ m}^2$

Cost of planting the grass = ₹ $2.50 \times 240000 = ₹ 6,00,000$

Hence, the required cost = ₹6,00,000.

6. The perimeter of the circle = 176 cm

$$2\pi r = 176$$

$$2 \times \frac{22}{7} \times r = 176$$

$$\therefore r = \frac{176 \times 7}{2 \times 22} = 4 \times 7 = 28 \text{ cm}$$

7. Radius = 3.5 cm

Circumference = $2\pi r$

=
$$2 \times \frac{22}{7} \times 3.5 = 22 \text{ cm}$$

Area = πr^2
= $\frac{22}{7} \times 3.5 \times 3.5$
= $\frac{77}{2} = 38.5 \text{ cm}^2$

8. Area of the circle = 154 cm^2

$$\pi r^2 = 154$$

$$\frac{22}{7} \times r^2 = 154$$

$$r^2 = 154 \times \frac{7}{22}$$

$$r^2 = 7 \times 7$$

$$r^2 = (7)^2$$

$$r^2 = (7)^2$$

$$r = 7 \text{ cm}$$

Circumference of the circle = $2\pi r$

$$= 2 \times \frac{22}{7} \times 7 = 44 \text{ cm}$$

9. Perimeter of the given figure = Circumference of the semicircle + diameter

$$=\pi r + 2r$$

$$= \frac{22}{7} \times 7 + 2 \times 7$$
= 22 + 14
= 36 cm

Hence, the required perimeter = 36 cm.

10. Let each side of the square be x cm.

$$x^2 + x^2 = (50)^2$$
 [Using Pythagoras Theorem]

$$2x^2 = 2500$$

$$x^2 = 1250$$

2	1250
5	625
5	125
5	25
5	5
	1

$$x = \sqrt{1250} = \sqrt{2 \times 5 \times 5 \times 5 \times 5}$$

$$x = 5 \times 5 \times \sqrt{2} = 25\sqrt{2}$$

The side of the square = 25V2 cm

Perimeter of the square = $4 \times \text{side} = 4 \times 25 \text{V2} = 100 \text{V2} \text{ cm}$

Short Answer:

1. Length of the wire = 176 cm

Side of the square = $176 \div 4 \text{ cm} = 44 \text{ cm}$

Area of the square = $(Side)^2 = (44)^2 \text{ cm}^2 = 1936 \text{ cm}^2$

Circumference of the circle = 176 cm

$$2\pi r = 176$$
 cm

$$2 \times \frac{22}{7} \times r = 176 \text{ cm}$$

$$r = \frac{176 \times 7}{2 \times 22} = 28 \text{ cm}$$

 \therefore Area of the circle = πr^2

$$=\frac{22}{7} \times 28 \times 28 = 2464 \text{ cm}^2$$

Since 2464 cm 2 > 1936 cm 2

Hence, the circle will have more area.

2. Area of the square = $(Side)^2 = 10 \text{ cm} \times 10 \text{ cm} = 100 \text{ cm}^2$

Area of the circle = πr^2

$$=\frac{22}{7}\times 3.5\times 3.5$$

$$=\frac{77}{2}$$
 cm²

$$= 38.5 \text{ cm}^2$$

Area of the shaded portion = $100 \text{ cm}^2 - 38.5 \text{ cm}^2 = 61.5 \text{ cm}^2$

3. Area of the rectangle = $1 \times b = 14 \text{ cm} \times 14 \text{ cm} = 196 \text{ cm}^2$

Radius of the semicircle = $\frac{14}{2}$ = 7 cm

Area of two equal semicircle = $2 \times \frac{1}{2} \pi r^2$

$$=\pi r^2$$

$$=\frac{22}{7}\times7\times7$$

$$= 154 \text{ cm}^2$$

Area of the shaded portion = $196 \text{ cm}^2 - 154 \text{ cm}^2 = 42 \text{ cm}^2$

4. Length of the rectangular park = 45 m

Breadth of the park = 30 m

Area of the park = $1 \times 6 = 45m \times 30m = 1350 \text{ m}^2$

Length of the park including the path = $45 \text{ m} + 2 \times 2.5 \text{ m} = 50 \text{ m}$

Breadth of the park including the path = $30 \text{ m} + 2 \times 2.5 \text{ m} = 30 \text{m} + 5 \text{m} = 35 \text{m}$

Area of the park including the path = $50 \text{ m} \times 35 \text{ m} = 1750 \text{ m}^2$

Area of the path = $1750 \text{ m}^2 - 1350 \text{ m}^2 = 400 \text{ m}^2$

Hence, the required area = 400 m^2 .

5. Area of the rectangular portions = $1 \times b = 80 \text{ cm} \times 42 \text{ cm} = 3360 \text{ cm}^2$

Area of two semicircles = $2 \times \frac{1}{2} \pi r^2 = \pi r^2$

$$=\frac{22}{7}\times\ 21\ \times\ 21$$

$$=22\times3\times21$$

$$= 1386 \text{ cm}^2$$

Total area = $3360 \text{ cm}^2 + 1386 \text{ cm}^2 = 4746 \text{ cm}^2$

Total length of the boundary of field = $(2 \times 80 + \pi r + \pi r)$ cm

$$= (160 + \frac{22}{7} \times 21 + \frac{22}{7} \times 21)$$

$$= (160 + 132) cm$$

Hence, the required (i) area = 4746 cm² and (ii) length of boundary = 292 cm.

6. Radius of the wheel = 28 cm

Circumference =
$$2\pi r = 2 \times \frac{22}{7} \times 28 = 176 \text{ cm}$$

Distance to be covered = 352 m or 352 × 100 = 35200 m

Number of rotation made by the wheel to cover the given distance = $\frac{35200}{176}$ = 200

Hence, the required number of rotations = 200.

Long Answer:

1. Area of the playground = $l \times b = 160 \text{ m} \times 80 \text{ m} = 12800 \text{ m}^2$

Area left for swings =
$$1 \times b = 80m \times 80m = 6400 \text{ m}^2$$

Area of the remaining portion =
$$12800 \text{ m}^2 - 6400 \text{ m}^2 = 6400 \text{ m}^2$$

Area of the vertical road =
$$80 \text{ m} \times 1.5 \text{ m} = 120 \text{ m}^2$$

Area of the horizontal road =
$$80 \text{ m} \times 1.5 \text{ m} = 120 \text{ m}^2$$

Area of the common portion =
$$1.5 \times 1.5 = 2.25 \text{ m}^2$$

Area of the two roads =
$$120 \text{ m}^2 + 120 \text{ m}^2 - 2.25 \text{ m}^2 = (240 - 2.25) \text{ m}^2 = 237.75 \text{ m}^2$$

Area of the portion to be planted by grass =
$$6400 \text{ m}^2 - 237.75 \text{ m}^2 = 6162.25 \text{ m}^2$$

Hence, the required area =
$$6162.25 \text{ m}^2$$
.

2. DE (Radius) = AE + AD =
$$8 \text{ cm} + 5 \text{ cm} = 13 \text{ cm}$$

$$AD^2 + DC^2 = AC^2$$
 (By Pythagoras Theorem)

$$\Rightarrow$$
 (5)² + DC² = (13)²

$$\Rightarrow$$
 25 + DC² = 169

$$\Rightarrow$$
 DC² = 169 - 25 = 144

$$\Rightarrow$$
 DC = $\sqrt{144}$ = 12 cm

Perimeter of rectangle ABCD = 2(AD + DC)

$$= 2(5 cm + 12 cm)$$

$$= 2 \times 17$$
 cm

$$= 34 cm$$

3. Here,
$$AB = 10 \text{ cm}$$

$$AF = 4 cm$$

$$FB = 10 cm - 4 cm = 6 cm$$

Area of the parallelogram = Base \times Height = FB \times AD = 6 cm \times 6 cm = 36 cm²

Hence, the required area of shaded region = 36 cm^2 .

Area
$$\triangle DEF = \frac{1}{2} \times b \times h$$

$$=\frac{1}{2} \times AF \times AD$$

$$=\frac{1}{2}\times 4\times 6$$

$$= 12 \text{ cm}^2$$

Area
$$\triangle BEC = \frac{1}{2} \times b \times h$$

$$= \frac{1}{2} \times GC \times BC$$

$$=\frac{1}{2}\times 4\times 6$$

$$= 12 \text{ cm}^2$$

Area of Rectangle ABCD = $I \times b = 10 \text{ cm} \times 6 \text{ cm} = 60 \text{ cm}^2$

Remaining area of Rectangle = $60 \text{ cm}^2 - 36 \text{ cm}^2 = 24 \text{ cm}^2$

4. Length of the rectangular piece = 6 cm

Area of the sheet =
$$1 \times b = 6 \text{ cm} \times 5 \text{ cm} = 30 \text{ cm}^2$$

Area of the smaller rectangular piece = $3 \text{ cm} \times 2 \text{ cm} = 6 \text{ cm}^2$

Ratio of areas of two rectangles = $30 \text{ cm}^2 : 6 \text{ cm}^2 = 5 : 1$

5. PQ =
$$\frac{1}{2}$$
 AB = $\frac{1}{2}$ × 14 = 7 cm

PQRS is a square with each side 7 cm

Radius of each circle =
$$\frac{7}{2}$$
 cm

Area of the quadrants of each circle
$$=\frac{1}{4} \times \pi r^2$$

Area of the four quadrants of all circles

$$= 4 \times \frac{1}{4}\pi r^{2} = \pi r^{2} = \frac{22}{7} \times \frac{7}{2} \times \frac{7}{2}$$
$$= \frac{77}{2} \text{ cm}^{2} = 38.5 \text{ cm}^{2}$$

Area of the square PQRS = Side \times Side = 7 cm \times 7 cm = 49 cm² Area of the shaded portion = 49 cm² – 38.5 cm² = 10.5 cm² Hence, the required area = 10.5 cm².

$$= \frac{1}{2} \times 3.6 \times 3.6 = 6.48 \text{ cm}^2$$

$$\text{Area of } \Delta \text{ABH} = \frac{1}{2} \times b \times h = \frac{1}{2} \times \text{AB} \times \text{DH}$$

$$= \frac{1}{2} \times 12 \times 2.4 \text{ cm} = 14.4 \text{ cm}^2$$

Area of
$$\triangle ACF = \frac{1}{2} \times b \times h = \frac{1}{2} \times CF \times AC$$

= $\frac{1}{2} \times 3.6 \times 2.4 = 4.32 \text{ cm}^2$

Area of the rectangle FCEG =
$$l \times b$$

= CE × CF
= $6 \text{ cm} \times 3.6 = 21.6 \text{ cm}^2$

Area of
$$\triangle GEB = \frac{1}{2} \times b \times h = \frac{1}{2} \times BE \times GE$$

= $\frac{1}{9} \times 3.6 \times 3.6 = 6.48 \text{ cm}^2$

Area of
$$\triangle ABH = \frac{1}{2} \times b \times h = \frac{1}{2} \times AB \times DH$$

= $\frac{1}{2} \times 12 \times 2.4$ cm = 14.4 cm²

Area of the polygon AFGBH = Area of Δ ACF + Area of rectangle FCEG + Area of Δ GEB + Area of Δ ABH

=
$$3.6 \text{ cm}^2 + 4.32 \text{ cm}^2 + 21.6 \text{ cm}^2 + 6.48 \text{ cm}^2 + 14.4 \text{ cm}^2$$

= 50.40 cm^2

Hence, the required area = 50.40 cm^2 .