MATHEMATICS

Chapter 2: Linear Equations in One Variable

Important Questions

Multiple Choice Questions-

Question 1. Solve: 3x = 12

- (a) 15
- (b) 4
- (c) 9
- (d) 3

Question 2. Sum of two numbers is 95. If one exceeds the other by 15, find the numbers.

- (a) 40 and 60
- (b) 50 and 55
- (c) 50 and 60
- (d) 40 and 55

Question 3. The sum of two-digit number and the number formed by interchanging its digit is 110. If ten is subtracted from the first number, the new number is 4 more than 5 times of the sum of the digits in the first number. Find the first number.

- (a) 46
- (b) 48
- (c) 64
- (d) 84

Question 4. Solve: 7x = 21

- (a) 3
- (b) 2
- (c) 14
- (d) none of these

Question 5. The digits of a two-digit number differ by 3. If the digits are interchanged, and the resulting number is added to the original number, we get 143. What can be the original number?

- (a) 85
- (b) 58
- (c) 36
- (d) 76

Question 6. The difference between two whole numbers is 66. The ratio of the two numbers is 2 : 5. What are the two numbers?

www.swottersacademy.com

- (a) 22 and 88
- (b) 44 and 66
- (c) 44 and 110
- (d) 33 and 99

Question 7. Solve: $5x - 2(2x - 7) = (3x - 1) + \frac{7}{2}$

- (a) 2
- (b) 3
- (c) 12
- (d) $\frac{23}{4}$

Question 8. Amina thinks of a number and subtracts $\frac{5}{2}$ from it. She multiplies the result by 8. The result now obtained is 3 times the same number she thought of. What is the number?

- (a) 2
- (b) 3
- (c) 4
- (d) none of these

Question 9. Solve 2x - 3 = x + 2

- (a) 4
- (b) 5
- (c) 3
- (d) 0

Question 10. Find the solution of 2x - 3 = 7

- (a) 3
- (b) 4
- (c) 5
- (d) none of these

Very Short Questions:

- 1. Identify the algebraic linear equations from the given expressions.
 - (a) $x^2 + x = 2$
 - (b) 3x + 5 = 11
 - (c) 5 + 7 = 12
 - (d) $x + y^2 = 3$

MATHS LINEAR EQUATIONS IN ONE VARIABLE

- 2. Check whether the linear equation 3x + 5 = 11 is true for x = 2.
- **3.** Form a linear equation from the given statement: 'When 5 is added to twice a number, it gives 11.'
- **4.** If x = a, then which of the following is not always true for an integer k.
 - (a) kx = ak
 - (b) $\frac{x}{k} = \frac{a}{k}$
 - (c) x k = a k
 - (d) x + k = a + k
- **5.** Solve the following linear equations:
 - (a) 4x + 5 = 9
 - (b) $x + \frac{3}{2} = 2x$
- **6.** Solve the given equation $3\frac{1}{x} \times 5\frac{1}{4} = 17\frac{1}{2}$
- 7. Verify that x = 2 is the solution of the equation 4.4x 3.8 = 5.
- 8.

Solve
$$\frac{3x}{4} - \frac{2x+5}{3} = \frac{5}{2}$$

- **9.** The angles of a triangle are in the ratio 2:3:4. Find the angles of the triangle.
- **10.** The sum of two numbers is 11 and their difference is 5. Find the numbers.

Short Questions:

- 1. If the sum of two consecutive numbers is 11, find the numbers.
- 2. The breadth of a rectangular garden is $\frac{2}{3}$ of its length. If its perimeter is 40 m, find its dimensions.
- **3.** The difference between two positive numbers is 40 and the ratio of these integers is 1 : 3. Find the integers.
- **4.** Solve for x:

$$\frac{7x+14}{3} - \frac{17-3x}{5} = 6x - \frac{4x+2}{3} - 5$$

5. The sum of a two-digit number and the number obtained by reversing its digits is 121. Find the number if it's unit place digit is 5.

Long Questions:

1. If the length of the rectangle is increased by 40% and its breadth is decreased by 40%, what will be the percentage change in its perimeter?

- 2. A fruit seller buys some oranges at the rate of ₹ 5 per orange. He also buys an equal number of bananas at the rate of ₹ 2 per banana. He makes a profit of 20% on oranges and a profit of 15% on bananas. In the end, he sold all the fruits. If he earned a profit of ₹ 390, find the number of oranges.
- **3.** A steamer goes downstream from one point to another in 7 hours. It covers the same distance upstream in 8 hours. If the speed of stream be 2 km/h, find the speed of the steamer in still water and the distance between the ports.

Answer Key-

Multiple Choice questions-

- **1.** (b) 4
- 2. (d) 40 and 55
- **3.** (c) 64
- **4.** (a) 3
- **5.** (a) 85
- 6. (c) 44 and 110
- 7. (d) $\frac{23}{4}$
- **8.** (c) 4
- **9.** (b) 5
- **10.** (c) 5

Very Short Answer:

- 1. (a) $x^2 + x = 2$ is not a linear equation.
 - (b) 3x + 5 = 11 is a linear equation.
 - (c) 5 + 7 = 12 is not a linear equation as it does not contain variable.
 - (d) $x + y^2 = 3$ is not a linear equation.
- **2.** Given that 3x + 5 = 11

For x = 2, we get

LHS =
$$3 \times 2 + 5 = 6 + 5 = 11$$

LHS = RHS = 11

Hence, the given equation is true for x = 2

- **3.** As per the given statement we have
 - 2x + 5 = 11 which is the required linear equation.
- **4.** Correct answer is (b).
- **5.** (a) We have 4x + 5 = 9

MATHS LINEAR EQUATIONS IN ONE VARIABLE

$$\Rightarrow$$
 4x = 9 – 5 (Transposing 5 to RHS)

$$\Rightarrow$$
 4x = 4

$$\Rightarrow$$
 x = 1 (Transposing 4 to RHS)

(b) We have
$$x + \frac{3}{2} = 2x$$

$$\Rightarrow \frac{3}{2} = 2x - x$$

$$\Rightarrow x = \frac{3}{2}$$

6. We have
$$3\frac{1}{x} \times 5\frac{1}{4} = 17\frac{1}{2}$$

$$\Rightarrow \frac{3x+1}{r} \times \frac{21}{4} = \frac{35}{2}$$

$$\Rightarrow \frac{3x+1}{x} = \frac{35}{2} \div \frac{21}{4}$$

Transpsoing $\frac{21}{4}$ to RHS

$$\Rightarrow \frac{3x+1}{4} = \frac{35}{2} \times \frac{4}{21}$$

$$\Rightarrow \frac{3x+1}{4} = \frac{10}{3}$$

$$\Rightarrow$$
 3(3x + 1) = 4 × 10 (Cross-multiplication)

$$\Rightarrow$$
 9x + 3 = 40 (Solving the brackets)

$$\Rightarrow$$
 9x = 40 - 3 (Transposing 3 to RHS)

$$\Rightarrow$$
 $9x = 37$

$$\therefore \qquad x = \frac{37}{9}$$

Hence the required solution is $x = \frac{37}{9}$

7. We have
$$4.4x - 3.8 = 5$$

Putting x = 2, we have

$$4.4 \times 2 - 3.8 = 5$$

$$\Rightarrow 8.8 - 3.8 = 5$$

$$\Rightarrow$$
 5 = 5

$$L.H.S. = R.H.S.$$

Hence verified.

8.

We have
$$\frac{3x}{4} - \frac{2x+5}{3} = \frac{5}{2}$$

LCM of 2, 3 and 4 = 12

$$\therefore \frac{3x}{4} \times 12 - \frac{2x+5}{3} \times 12 = \frac{5}{2} \times 12$$

(Multiplying both sides by 12)

$$\Rightarrow$$
 3x × 3 – (2x + 5) × 4 = 5 × 6

$$\Rightarrow$$
 9x - 8x - 20 = 30 (Solving the bracket)

$$\Rightarrow$$
 x $-$ 20 = 30

$$\Rightarrow$$
 x = 30 + 20 (Transposing 20 to RHS)

$$\Rightarrow$$
 x = 50

Hence x = 50 is the required solution.

9. Let the angles of a given triangle be $2x^{\circ}$, $3x^{\circ}$ and $4x^{\circ}$.

$$2x + 3x + 4x = 180$$
 (: Sum of the angles of a triangle is 180°)

$$\Rightarrow$$
 9x = 180

$$\Rightarrow$$
 x = 20 (Transposing 9 to RHS)

Angles of the given triangles are

$$2 \times 20 = 40^{\circ}$$

$$3 \times 20 = 60^{\circ}$$

$$4 \times 20 = 80^{\circ}$$

10. Let one of the two numbers be x.

Other number = 11 - x.

As per the conditions, we have

$$x - (11 - x) = 5$$

$$\Rightarrow$$
 x - 11 + x = 5 (Solving the bracket)

$$\Rightarrow$$
 2x - 11 = 5

$$\Rightarrow$$
 2x = 5 + 11 (Transposing 11 to RHS)

$$\Rightarrow$$
 2x = 16

$$\Rightarrow$$
 x = 8

Hence the required numbers are 8 and 11 - 8 = 3

Short Answer:

1. Let the two consecutive numbers be x and x + 1.

As per the conditions, we have

$$x + x + 1 = 11$$

$$\Rightarrow$$
 2x + 1 = 11

$$\Rightarrow$$
 2x = 11 – 1 (Transposing 1 to RHS)

$$\Rightarrow$$
 2x = 10

$$x = 5$$

Hence, the required numbers are 5 and 5 + 1 = 6.

2. Let the length of the garden be x m

its breadth =
$$\frac{2}{3} \times m$$
.

Perimeter = 2 [length + breadth]

$$2\left(x+\frac{2}{3}x\right) = 40$$

$$\Rightarrow 2x + \frac{4}{3}x = 40$$
 (Solving the bracket)

$$\Rightarrow 3 \times 2x + 3 \times \frac{4}{3}x = 3 \times 40$$

(Multiplying both sides by 3)

$$\Rightarrow 6x + 4x = 120$$

$$\Rightarrow$$
 10x = 120

$$\therefore \qquad x = \frac{120}{10} = 12$$

$$\therefore \text{ Length} = 12 \text{ m and breadth } \frac{2}{3}x = 12 \times \frac{2}{3} = 8 \text{ m.}$$

3. Let one integer be x.

Other integer =
$$x - 40$$

As per the conditions, we have

$$\frac{x-40}{x} = \frac{1}{3}$$

$$\Rightarrow$$
 3(x - 40) = x

$$\Rightarrow$$
 3x - 120 = x

$$\Rightarrow$$
 3x - x = 120

$$\Rightarrow$$
 2x = 120

$$\Rightarrow$$
 x = 2

Hence the integers are 60 and 60 - 40 = 20.

4.

We have

$$\frac{7x+14}{3} - \frac{17-3x}{5} = 6x - \frac{4x+2}{3} - 5$$

LCM of 3 and 5 = 15

$$\frac{7x+14}{3} \times 15 - \frac{17-3x}{5} \times 15 =$$

$$6x \times 15 - \frac{4x + 2}{3} \times 15 - 5 \times 15$$

(Multiplying both sides by 15)

$$\Rightarrow (7x + 14) \times 5 - (17 - 3x) \times 3$$

$$= 90x - (4x + 2) \times 5 - 75$$

$$\Rightarrow$$
 35x + 70 - 51 + 9x

$$=90x-20x-10-75$$

(Solving the brackets)

$$\Rightarrow$$
 44x + 19 = 70x - 85

$$\Rightarrow$$
 44x - 70x = -85 - 19

(Transposing 70x to LHS and 19 to RHS)

$$\Rightarrow$$
 $-26x = -104$

$$\therefore \qquad x = \frac{-104}{-26} = 4$$

Hence x = 4 is the required number

5. Unit place digit is given as 5

Let x be the tens place digit

Number formed = 5 + 10x

Number obtained by reversing the digits = $5 \times 10 + x = 50 + x$

As per the conditions, we have

$$5 + 10x + 50 + x = 121$$

$$\Rightarrow$$
 11x + 55 = 121

$$\Rightarrow$$
 11x = 121 – 55 (Transposing 55 to RHS)

$$\Rightarrow$$
 11x = 66

$$\Rightarrow$$
 x = 6

Thus, the tens place digit = 6

Hence the required number = $5 + 6 \times 10 = 5 + 60 = 65$

Long Answer:

1. Let the length of the rectangle be x m and its breadth be y m

Perimeter = 2(x + y)

Now the length of the rectangle becomes after a 40% increase

$$= x + \frac{40}{100}x = \frac{140}{100}x = \frac{7}{5}x$$

Breadth of the rectangle becomes after 40% decrease

$$= y - \frac{40}{100}y = \frac{60}{100}y = \frac{3}{5}y$$

New perimeter = $2\left[\frac{7x}{5} + \frac{3y}{5}\right]$ m

:. Change in perimeter

$$= 2 \left[\frac{7x}{5} + \frac{3y}{5} \right] - 2[x+y]$$

$$= \frac{14x}{5} + \frac{6y}{5} - 2x - 2y = \frac{14x}{5} - 2x + \frac{6y}{5} - 2y$$

$$=\left(\frac{4x}{5} - \frac{4y}{5}\right)$$
m

Percentage of change = $\frac{4x - 4y}{5 - 5} \times 100$

$$= \frac{\frac{4}{5}(x-y)}{2(x+y)} \times 100 = \frac{4}{5 \times 2} \left(\frac{x-y}{x+y}\right) \times 100$$

$$=40\left(\frac{x-y}{x+y}\right)\%$$

Hence the required change percentage

$$=40\left(\frac{x-y}{x+y}\right)\%$$

2. Let the number of oranges bought by him be x and also the number of bananas be x.

Cost of x oranges at the rate of ₹ 5 per orange = ₹ 5x

Cost of x bananas at the rate of \mathbb{Z} 2 per banana = \mathbb{Z} 2x

Profit earned on oranges =
$$\frac{20}{100} \times 5x = 7$$

Profit earned on bananas =
$$\frac{15}{100} \times 2x = 7 \frac{3}{10}x$$

As per the conditions, we have

$$x + \frac{3}{10}x = 390$$

$$\Rightarrow \frac{10x + 3x}{10} = 390$$

$$\Rightarrow \frac{13x}{10} = 390$$

$$\Rightarrow \qquad x = 390 \times \frac{10}{13}$$

$$\left(\text{Transposing } \frac{13}{10} \text{ to RHS}\right)$$

$$\Rightarrow \qquad x = 30 \times 10 = 300$$

Hence, the number of oranges = 300.

3. Let speed of steamer in still water = x km/h

Speed downstream =
$$(x + 2) km/h$$

Speed upstream =
$$(x - 2) \text{ km/h}$$

Distance covered in 7 hours while downstream =
$$7(x + 2)$$

Distance covered in 8 hours while upstream =
$$8(x-2)$$

According to the condition,

$$7(x + 2) = 8(x - 2)$$

$$\Rightarrow$$
 7x + 14 = 8x - 16

$$\Rightarrow$$
 x = 30 km/h

Total Distance =
$$7(x + 2) \text{ km} = 7(30 + 2) \text{ km} = 7 \times 32 \text{ km} = 224 \text{ km}$$
.