MATHEMATICS

Important Questions

Multiple Choice questions-

Question. $1 x^2-2x+1$ is a polynomial in:

- a. One Variable
- b. Two Variables
- c. Three variable
- d. None of the above

Question. 2 The coefficient of x^2 in $3x^3+2x^2-x+1$ is:

- a. 1
- b. 2
- c. 3
- d. -1

Question. 3 A binomial of degree 20 in the following is:

- a. 20x + 1
- b. x/20 + 1
- c. x20 + 1
- d. x2+20

Question. 4 The degree of $4x^3-12x^2+3x+9$ is

- a. 0
- b. 1
- c. 2
- d. 3

Question. $5 x^2 - x$ is polynomial.

- a. Linear
- b. Quadratic
- c. Cubic
- d. None of the above

Question. $6 x - x^3$ is a _____ polynomial.

- a. Linear
- b. Quadratic

- c. Cubic
- d. None of the above

Question. 7 1 + 3x is a _____ polynomial.

- a. Linear
- b. Quadratic
- c. Cubic
- d. None of the above

Question. 8 The value of $f(x) = 5x-4x^2+3$ when x = -1, is:

- a. 3
- b. -12
- c. -6
- d. 6

Question. 9 The value of $p(t) = 2+t+2t^2-t^3$ when t=0 is

- a. 2
- b. 1
- c. 4
- d. 0

Question. 10 The zero of the polynomial f(x) = 2x+7 is

- a. 2/7
- b. -2/7
- c.7/2
- d. -7/2

Very Short:

- 1. Factorise: $125x^3 64y^3$
- 2. Find the value of $(x + y)^2 + (x y)^2$.
- 3. If $p(x) = x^2 2\sqrt{2}x + 1$, then find the value of $p(2\sqrt{2})$
- 4. Find the value of m, if x + 4 is a factor of the polynomial $x^2 + 3x + m$.
- 5. Find the remainder when $x^3 + x^2 + x + 1$ is divided by $x \frac{1}{2}$ using remainder theorem.
- 6. Find the common factor in the quadratic polynomials $x^2 + 8x + 15$ and $x^2 + 3x 10$.

Short Questions:

1. Expand:

(i)
$$(y - \sqrt{3})^2$$

(ii)
$$(x - 2y - 3z)^2$$

- 2. If, $x + = \frac{1}{x} = 7$
- 3. then find the value of $x^3 + \frac{1}{x^3}$
- 4. Show that p 1 is a factor of $p^{10} + p^8 + p^6 p^4 p^2 1$.
- 5. If 3x + 2y = 12 and xy = 6, find the value of $27x^3 + 8y^3$
- 6. Factorise: $4x^2 + 9y^2 + 16z^2 + 12xy 24yz 16xz$.
- 7. Factorise: $1 2ab (a^2 + b^2)$.
- 8. Factories:

$$27a^3 + \frac{1}{64b^3} + \frac{27a^2}{4b} + \frac{9a}{16b^2}$$

Long Questions:

- 1. Prove that $(a + b + c)^3 a^3 b^3 c^3 = 3(a + b)(b + c)(c + a)$.
- 2. Factorise: $(m + 2n)^2 x^2 22x (m + 2n) + 72$.
- 3. If x 3 is a factor of $x^2 6x + 12$, then find the value of k. Also, find the other factor of the polynomial for this value of k.
- 4. Find a and b so that the polynomial $x^3 10x^2 + ax + b$ is exactly divisible by the polynomials (x 1) and (x 2).
- 5. Factorise: $x^2 6x^2 + 11x 6$.

Assertion and Reason Questions:

- **1.** In these questions, a statement of assertion followed by a statement of reason is given. Choose the correct answer out of the following choices.
 - a) Assertion and reason both are correct statements and reason is correct explanation for assertion.
 - b) Assertion and reason both are correct statements but reason is not correct explanation for assertion.
 - c) Assertion is correct statement but reason is wrong statement.
 - d) Assertion is wrong statement but reason is correct statement.

Assertion: If $f(x) = 3x^7 - 4x^6 + x + 9$ is a polynomial, then its degree is 7.

Reason: Aromatic aldehydes are almost as reactive as formaldehyde.

- **2.** In these questions, a statement of assertion followed by a statement of reason is given. Choose the correct answer out of the following choices.
 - a) Assertion and reason both are correct statements and reason is correct explanation for assertion.
 - b) Assertion and reason both are correct statements but reason is not correct explanation for assertion.
 - c) Assertion is correct statement but reason is wrong statement.
 - d) Assertion is wrong statement but reason is correct statement.

Assertion: The expression $3x^4 - 4x^{3/2} + x^2 = 2$ is not a polynomial because the term $-4x^{3/2}$ contains a rational power of x.

Reason: The highest exponent in various terms of an algebraic expression in one variable is called its degree.

Answer Key:

MCQ:

- 1. (a) One Variable
- 2. (b) 2
- 3. (c) $x^{20} + 1$
- 4. (d) 3
- 5. (b) Quadratic
- 6. (c) Cubic
- 7. (a) Linear
- 8. (c) -6
- 9. (a) 2
- 10.(d) -7/2

Very Short Answer:

1. $125x^3 - 6443 = (5x)^3 - (4y)^3$

By using
$$a3 - b3 = (a - b) (a^2 + a^b + b^2)$$
, we obtain

$$125x^3 - 64y3 = (5x - 4y) (25x2 + 20xy + 16y^2)$$

2.
$$(x + y)^2 + (x - y)^2 = x^2 + y^2 + 2xy + x^2 + y^2 - 2xy$$

$$= 2x^2 + 2y^2 = 21x^2 + y^2$$

3. Put $x = 2\sqrt{2}$ in p(x), we obtain

$$p(2\sqrt{2}) = (2\sqrt{2})^2 - 2\sqrt{2}(2\sqrt{2}) + 1 = (2\sqrt{2})^2 - (2\sqrt{2})^2 + 1 = 1$$

4. Let
$$p(x) = x^2 + 3x + m$$

Since (x + 4) or (x - (-4)) is a factor of p(x).

∴ p
$$(-4) = 0$$

$$\Rightarrow$$
 (-4)² + 3(-4) + m = 0

$$\Rightarrow$$
 16 – 12 + m = 0

$$\Rightarrow$$
 m = -4

5. Let
$$p(x) = x3 + x2 + x + 1$$
 and $q(x) = x - \frac{1}{2}$

Here, p(x) is divided by q(x)

∴ By using remainder theorem, we have

Remainder =
$$p\left(\frac{1}{2}\right) = \left(\frac{1}{2}\right)^3 + \left(\frac{1}{2}\right)^2 + \frac{1}{2} + 1$$

= $\frac{1}{8} + \frac{1}{4} + \frac{1}{2} + 1 = \frac{1+2+4+8}{8} = \frac{15}{8}$

6.
$$x^2 + 8x + 15 = x^2 + 5x + 3x + 15 = (x + 3)(x + 5)$$

$$x^2 + 3x - 10 = x^2 + 5x - 2x - 10 = (x - 2)(x + 5)$$

Clearly, the common factor is x + 5.

Short Answer:

Ans: 1.
$$(y - \sqrt{3})^2 = y^2 - 2 \times y \times \sqrt{3} + (\sqrt{3})^2 = y^2 - 2\sqrt{3}y + 3(x - 2y - 3z)^2$$

$$= x^2 + 1 - 2y)^2 + (-3z)^2 + 2 \times x \times (-2y) + 2 \times (-2y) \times (-3z) + 2 \times (-3z) \times x$$

$$= x^2 + 4y^2 + 9z^2 - 4xy + 12yz - 6zx$$

Ans: 2. We have
$$x + \frac{1}{x} = 7$$

Cubing both sides, we have

$$\left(x + \frac{1}{x}\right)^3 = 7^3$$

$$\Rightarrow x^3 + \frac{1}{x^3} + 3 \times x \times \frac{1}{x} \left(x + \frac{1}{x}\right) = 343$$

$$\Rightarrow x^3 + \frac{1}{x^3} + 3 \times 7 = 343$$

$$\Rightarrow x^3 + \frac{1}{x^3} = 343 - 21 = 322$$

Ans: 3. Let
$$f(p) = p^{10} + p^8 + p^6 - p^4 - p^2 - 1$$

Put p = 1, we obtain

$$f(1) = 1^{10} + 1^8 + 1^6 - 1^4 - 1^2 - 1$$

$$= 1 + 1 + 1 - 1 - 1 - 1 = 0$$

Hence, p - 1 is a factor of $p^{10} + p^8 + p^6 - p^4 - p^2 - 1$

Ans: 4. We have 3x + 2y = 12

On cubing both sides, we have

$$\Rightarrow (3x + 2y)^3 = 12^3$$

$$\Rightarrow$$
 $(3x)^3 + (2y)^3 + 3 \times 3x \times 2y(3x + 2y) = \sqrt{728}$

$$\Rightarrow$$
 27x³+ 8y³ + 18xy(3x + 2y) = $\sqrt{728}$

$$\Rightarrow 27x^3 + 8y^3 + 18 \times 6 \times 12 = \sqrt{728}$$

$$\Rightarrow$$
 27x³+ 8y³ + 1296 = $\sqrt{728}$

$$\Rightarrow$$
 27x³+ 8y³ = $\sqrt{728}$ – 1296

$$\Rightarrow$$
 27x³+ 8y³ = 432

Ans: 5. $4x^2 + 9y^2 + 16z22 + 12xy - 24yz - 16xz$

$$= (2x)^2 + (3y)^2 + (-4z)^2 + 2(2x)(3y) + 2(3y)(= 42) + 2(-42)(2x)$$

By using $a^2 + b^2 + 2ab + 2bc + 2ca = (a + b + c)^2$, we obtain

=
$$(2x + 3y - 4z)^2$$
 = $(2x + 3y - 4z)(2x + 3y - 4z)$

Ans: 6.
$$1 - 2ab - (a^2 + b^2) = 1 - (a^2 + b^2 + 2ab)$$

$$= 1^2 - (a + b)^2$$

$$= (1 + a + b) (1 - a - b)$$

$$[: x^2 - y^2 = (x + y) (x - y)]$$

Ans: 7.

$$27a^{3} + \frac{1}{64b^{3}} + \frac{27a^{2}}{4b} + \frac{9a}{16b^{2}} = (3a)^{3} + \frac{1}{(4b)^{3}} + 3.(3a). \left(\frac{1}{4b}\right) \left(3a + \frac{1}{4b}\right)$$
By using $x^{3} + y^{3} + 3xy (x + y) = (x + y)^{3}$, we have
$$= \left(3a + \frac{1}{4b}\right)^{3}.$$

Long Answer:

Ans: 1. L.H.S. =
$$(a + b + c)^3 - a^3 - b^3 - c^3$$

MATHEMATICS POLYNOMIALS

=
$$\{(a + b + c)^3 - 3\} - \{b^3 + c^3\}$$

$$= (a + b + c - a) \{(a + b + c)^2 + a^2 + a(a + b + c)\} - (b + c) (b^2 + c^2 - bc)$$

=
$$(b + c) \{a^2 + b^2 + 2 + 2ab + 2bc + 2ca + a^2 + a^2 + ab + ac - b^2 - a^2 + bc\}$$

$$= (b + c) (3a2 + 3ab + 3bc + 3ca)$$

$$= 3(b + c) \{a^2 + ab + bc + ca\}$$

$$= 31b + c) \{ \{a^2 + ca\} + (ab + bc) \}$$

$$= 3(b + c) \{a(a + c) + b(a + c)\}$$

$$= 3(b + c)(a + c) (a + b)$$

$$= 3(a + b)(b + c)(c + a) = R.H.S.$$

Ans: 2. Let m + 2n = a

$$(m + 2n)^2 x^2 - 22x (m + 2n) + 72 = a^2x^2 - 22ax + 72$$

$$= a^2x^2 - 18ax - 4ax + 72$$

$$= ax(ax - 18) - 4(ax - 18)$$

$$= (ax - 4) (ax - 18)$$

$$= \{(m + 2n)x - 4\} \{(m + 2n)x - 18\}$$

$$= (mx + 2nx - 4) (mx + 2nx - 18).$$

Ans: 3. Here, x - 3 is a factor of $x^2 - kx + 12$

 \therefore By factor theorem, putting x = 3, we have remainder 0.

$$\Rightarrow$$
 (3)² - k(3) + 12 = 0

$$\Rightarrow$$
 9 – 3k + 12 = 0

$$\Rightarrow$$
 3k = 21

$$\Rightarrow$$
 k = 7

Now,
$$x^2 - 7x + 12 = x^2 - 3x - 4x + 12$$

$$= x(x-3) - 4(x-3)$$

$$= (x-3)(x-4)$$

Hence, the value of k is 7 and other factor is x - 4.

Ans: 4. Let
$$p(x) = x^3 - 10x^2 + ax + b$$

Since p(x) is exactly divisible by the polynomials (x-1) and (x-2).

 \therefore By putting x = 1, we obtain

$$(1)^3 - 10(1)^2 + a(1) + b = 0$$

$$\Rightarrow$$
 a + b = 9

And by putting x = 2, we obtain

$$(2)^3 - 10(2)^2 + a(2) + b = 0$$

$$8 - 40 + 2a + b = 0$$

$$\Rightarrow$$
 2a + b = 32

Subtracting (i) from (ii), we have

$$a = 23$$

From (i), we have 23 + b = 9 = b = -14

Hence, the values of a and b are a = 23 and b = -14

Ans: 5. Let
$$p(x) = x^2 - 6x^2 + 11x - 6$$

Here, constant term of p(x) is -6 and factors of -6 are ± 1 , ± 2 , ± 3 and ± 6

By putting x = 1, we have

$$p(1) = (1)^3 - 6(1)^2 + 11(1) - 6 = 1 - 6 + 11 - 6 = 0$$

$$\therefore$$
 (x – 1) is a factor of p(x)

By putting x = 2, we have

$$p(2) = (2)^3 - 6(2)^2 + 11(2) - 6 = 8 - 24 + 22 - 6 = 0$$

$$\therefore$$
 (x – 2) is a factor of p(x)

By putting x = 3, we have

$$p(3) = (3)^3 - 6(3)^2 + 11(3) - 6 = 27 - 54 + 33 - 6 = 0$$

 \therefore (x – 3) is a factor of p(x) Since p(x) is a polynomial of degree 3, so it cannot have more than three linear factors.

$$x^3 - 6x^2 + 11x - 6 = k(x - 1)(x - 2)(x - 3)$$

By putting x = 0, we obtain

$$0 - 0 + 0 - 6 = k (-1) (-2) (3)$$

$$-6 = -6k$$

$$k = 1$$

Hence,
$$x^3 - 6x^2 + 11x - 6 = (x - 1)(x - 2)(x - 3)$$
.

Assertion and Reason Answers:

- **1.** a) Assertion and reason both are correct statements and reason is correct explanation for assertion.
- **2.** b) Assertion and reason both are correct statements but reason is not correct explanation for assertion.