MATHEMATICS

Chapter 2: RELATIONS AND FUNCTIONS

Important Questions

Multiple Choice questions-

Question 1. The domain of the function $^{7-x}P_{x-3}$ is

- (a) {1, 2, 3}
- (b) {3, 4, 5, 6}
- $(c) \{3, 4, 5\}$
- (d) {1, 2, 3, 4, 5}

Question 2. The domain of $tan^{-1}(2x + 1)$ is

- (a) R
- (b) $R \{1/2\}$
- (c) $R \{-1/2\}$
- (d) None of these

Question 3. Two functions f and g are said to be equal if f

- (a) The domain of f = the domain of g
- (b) The co-domain of f = the co-domain of g
- (c) f(x) = g(x) for all x
- (d) all of above

Question 4. If the function f : R \rightarrow R be given by f(x) = $x^2 + 2$ and g : R \rightarrow R is given by g(x) = x/(x)-1). The value of g of (x) is

- (a) $(x^2 + 2)/(x^2 + 1)$
- (b) $x^2/(x^2+1)$
- (c) $x^2/(x^2+2)$
- (d) None of these

Question 5. Given g(1) = 1 and g(2) = 3. If g(x) is described by the formula g(x) = ax + b, then the value of a and b is

- (a) 2, 1
- (b) -2, 1
- (c) 2, -1
- (d) -2, -1

Question 6. Let $f: R \rightarrow R$ be a function given by $f(x) = x^2 + 1$ then the value of $f^{-1}(26)$ is

- (a) 5
- (b) -5
- (c) ±5
- (d) None of these

Question 7. The function f(x) = x - [x] has period of

- (a) 0
- (b) 1
- (c) 2
- (d) 3

Question 8. The function $f(x) = \sin(\pi x/2) + \cos(\pi x/2)$ is periodic with period

- (a) 4
- (b) 6
- (c) 12
- (d) 24

Question 9. The domain of the function $f(x) = x/(1 + x^2)$ is

- (a) $R \{1\}$
- (b) $R \{-1\}$
- (c) R
- (d) None of these

Question 10. If f: R \rightarrow R is defined by $f(x) = x^2 - 3x + 2$, the f(f(y)) is

- (a) $x^4 + 6x^3 + 10x^2 + 3x$
- (b) $x^4 6x^3 + 10x^2 + 3x$
- (c) $x^4 + 6x^3 + 10x^2 3x$
- (d) $x^4 6x^3 + 10x^2 3x$

Very Short Questions:

- **1.** Find a and b if (a 1, b + 5) = (2, 3) If A = $\{1,3,5\}$, B = $\{2,3\}$ find:
- **2.** A × B
- **3.** B × A

Let $A = \{1,2\}$, $B = \{2,3,4\}$, $C = \{4,5\}$, find (Question- 4,5)

MATHEMATICS RELATIONS AND FUNCTIONS

- **4.** $A \times (B \cap C)$
- 5. $A \times (B \cup C)$
- **6.** If $P = \{1,3\}$, $Q = \{2,3,5\}$, find the number of relations from A to B
- 7. If A = $\{1,2,3,5\}$ and B = $\{4,6,9\}$, R = $\{(x, y): |x-y| \text{ is odd, } x \in A, y \in B\}$ Write R in roster form Which of the following relations are functions? Give reason.
- **8.** $R = \{(1,1), (2,2), (3,3), (4,4), (4,5)\}$
- **9.** $R = \{(2,1), (2,2), (2,3), (2,4)\}$
- **10.**R = {(1,2), (2,5), (3,8), (4,10), (5,12), (6,12)} Which of the following arrow diagrams represent a function? Why?

Short Questions:

- 1. Let A = $\{1,2,3,4\}$, B = $\{1,4,9,16,25\}$ and R be a relation defined from A to B as, R = $\{(x,y): x \in A, y \in A$
 - (a) Depict this relation using arrow diagram.
 - (b) Find domain of R.
 - (c) Find range of R.
 - (d) Write co-domain of R.
- 2. Let $R = \{(x, y) : x, y \in N \text{ and } y = 2x\}$ be a relation on N. Find :
 - (i) Domain
 - (ii) Codomain
 - iii) Range

Is this relation a function from N to N

- 3. Find the domain and range of, f(x) = |2x 3| 3
- **4.** Draw the graph of the Constant function, $f : R \in R$; $f(x) = 2 \ 2 \times R$. Also find its domain and range.
- 5. Let $R = \{(x, -y) : x, y \in W, 2x + y = 8\}$ then
 - (i) Find the domain and the range of R (ii) Write R as a set of ordered pairs.
- **6.** Let R be a relation from Q to Q defined by $R = \{(a,b) : a, b \in Q \text{ and } a b \in z\}$, Show that.
 - $(i)(a,a) \in R$ for all $a \in Q$ $(ii)(a,b) \in R$ implies that $(b,a) \in R$

 $(iii)(a,b) \in R$ and $(b,c) \in R$ implies that $(a,c) \in R$

- 7. If $f(x) = \frac{x^2 3x + 1}{x 1}$, find $f(-2) + f(\frac{1}{3}) + \frac{1}{3}$
- **8.** Find the domain and the range of the function $f(x) = 3x^2 5$. Also find f(-3) and the

www.swottersacademy.com

MATHEMATICS RELATIONS AND FUNCTIONS

numbers which are associated with the number 43 m its range.

- **9.** If $f(x) = x^2 3x + 1$, find x such that f(2x) = 2 f(x).
- **10.** Find the domain and the range of the function $f(x) \sqrt{x-1}$.

Long Questions:

1. Draw the graphs of the following real functions and hence find their range

$$f(x) = \frac{1}{x}, x \in R, x \neq 0$$

- **2.** If $f(x) = x \frac{1}{4}$, Prove that $[f(x)]^3 = f(x^3) + 3f(\frac{1}{x})$
- 3. Draw the graphs of the following real functions and hence find their range
- **4.** Let f be a function defined by $F: x \to 5x^2 + 2$, $x \in R$
 - (i) find the image of 3 under f.
 - (ii) find f(3) + f(2).
 - (iii) find x such that f(x) = 22
- 5. The function $f(x) = \frac{9x}{5} + 32$ is the formula to connect x°c to Fahrenheit units find (i) f(0) (ii) f(-10) (iii) the value of x f(x) = 212 interpret the result is each case.

Assertion Reason Questions:

- 1. In each of the following questions, a statement of Assertion is given followed by a corresponding statement of Reason just below it. Of the statements, mark the correct answer as.
 - **Assertion (A):** If (x + 1, y 2) = (3, 1), then x = 2 and y = 3.
 - **Reason (R):** Two ordered pairs are equal if their corresponding elements are equal.
 - (i) Both assertion and reason are true and reason is the correct explanation of assertion.
 - (ii) Both assertion and reason are true but reason is not the correct explanation of assertion.
 - (iii) Assertion is true but reason is false.
 - (iv) Assertion is false but reason is true.
- 2. In each of the following questions, a statement of Assertion is given followed by a corresponding statement of Reason just below it. Of the statements, mark the correct answer as.
 - **Assertion (A):** The cartesian product of two non-empty sets P and Q is denoted as $P \times Q$ and $P \times Q = \{(p, q) : p \in P, q \in Q\}$.
 - **Reason (R):** If A = {red, blue} and B = {b, c, s}, then $A \times B = \{(red, b), (red, c), (red), (blue, b)\}$

(blue, c) (blue, s)}

- (i) Both assertion and reason are true and reason is the correct explanation of assertion.
- (ii) Both assertion and reason are true but reason is not the correct explanation of assertion.
- (iii) Assertion is true but reason is false.
- (iv) Assertion is false but reason is true.

Answer Key:

MCQ

- **1.** (c) {3, 4, 5}
- **2.** (a) R
- 3. (d) all of above
- 4. (a) $(x^2 + 2)/(x^2 + 1)$
- **5.** (c) 2, -1
- **6.** (c) ±5
- **7.** (b) 1
- **8.** (a) 4
- **9.** (c) R
- **10.**(d) $x^4 6x^3 + 10x^2 3x$

Very Short Answer:

- **1.** a = 3, b = -2
- **2.** $A \times B = \{(1,2), (1,3), (3,2), (3,3), (5,2), (5,3)\}$
- **3.** $B \times A = \{ (2,1), (2,3), (2,5), (3,1), (3,3), (3,5) \}$
- **4.** {(1,4), (2,4)
- **5.** {(1,2), (1,3), (1,4), (1,5), (2,2), (2,3), (2,4), (2,5)
- **6.** $2^6 = 6$
- **7.** $R = \{ (1,4), (1,6), (2,9), (3,4), (3,6), (5,4), (5,6) \}$
- 8. Not a function because 4 has two images.
- **9.** Not a function because 2 does not have a unique image.
- **10.** Function

Short Answer:

1.

- (b) {1,2,3,4}
- (c) {1,4,9,16}
- (d) {1,4,9,16,25}
- **2.** (i) N
 - (ii) N
 - (iii) Set of even natural numbers yes, R is a function from N to N.
- 3. Domain is R

Range is $[-3, \infty)$

4. Domain = R

Range = $\{2\}$

5. (i) Given and 2x + y = 8 and $x, y \in w$

Put

$$x = 0, 2 \times 0 + y = 8 \Rightarrow y = 8,$$

 $x = 1, 2 \times 1 + y = 8 \Rightarrow y = 6,$

$$x = 2, 2 \times 2 + y = 8 \Rightarrow y = 4$$

$$x = 3$$
, $2 \times 3 + y = 8 \Rightarrow y = 2$,

$$x = 4, 2 \times 4 + y = 8 \Rightarrow y = 0$$

for all other values of $x, y \in w$ we do not get $y \in w$

- \therefore Domain of R = {0,1 2, 3, 4} and range of R = {8, 6, 4, 2, 0}
- (ii) R as a set of ordered pairs can be written as

$$R = \{(0,8),(1,6),(2,4),(3,2),(4,0)\}$$

6.

$$R = \lceil (a,b) : a,b \in Q \text{ and } a-b \in z \rceil$$

(i) For all $a \in Q$, a - a = 0 and $0 \in z$, it implies that $(a, a) \in R$.

(ii) Given
$$(a,b) \in R \Rightarrow a-b \in z \Rightarrow -(a-b) \in z$$

$$\Rightarrow b-a \in z \Rightarrow (b,a) \in R$$
.

(iii) Given
$$(a,b) \in R$$
 and $(b,c) \in R \Rightarrow a-b \in z$ and $b-c \in z \Rightarrow (a-b)+(b-c) \in z$

$$\Rightarrow a-c \in z \Rightarrow (a-c) \in R$$
.

7.

Given
$$f(x) = \frac{x^2 - 3x + 1}{x - 1}$$
, $Df = R - \{1\}$

$$\therefore f(-2) = \frac{(-2)^2 - 3(-2) + 1}{-2 - 1} - \frac{4 + 6 + 1}{-3} = 1\frac{1}{3} \text{ and}$$

$$f\left(\frac{1}{3}\right) = \frac{\left(\frac{1}{3}\right)^2 - 3 \times \frac{1}{3} + 1}{\frac{1}{3} - 1} = \frac{\frac{1}{9 - 1 + 1}}{-\frac{2}{3}} = \frac{\frac{1}{9}}{-\frac{2}{3}} = \frac{\frac{1}{9} \times \left(-\frac{3}{2}\right) = -\frac{1}{6}$$

$$\therefore f(-2) + f\left(\frac{1}{3}\right) = -\frac{11}{3} - \frac{1}{6} = \frac{-22 - 1}{6} = \frac{-23}{6} = 3\frac{5}{6}.$$

8.

Given
$$f(x) = 3x^2 - 5$$

For Df, f(x) must be real number

 \Rightarrow 3x² - 5 must be a real number

Which is a real number for every $x \in R$

$$\Rightarrow Df = R....(i)$$

for Rf, let
$$y = f(x) = 3x^2 - 5$$

We know that for all $x \in R$, $x^2 \ge 0 \Rightarrow 3x^2 \ge 0$

$$\Rightarrow 3x^2 - 5 \ge -5 \Rightarrow y \ge -5 \Rightarrow Rf = [-5, \infty]$$

Funthes, as $-3 \in Df$, f(-3) exists is and f(-3)

$$=3(-3)^2-5=22.$$

As $43 \in Rf$ on putting y = 43 is (i) we get

$$3x^2-5=43 \Rightarrow 3x^2=48 \Rightarrow x^2=16 \Rightarrow x=-4,4.$$

There fore - 4 and 4 are number

 $(is\ Df)$ which are associated with the number 43 in Rf

9.

Given
$$f(x) = x^2 - 3x + 1$$
, $Df = R$

$$f(2x) = (2x)^2 - 3(2x) + 1 = 4x^2 - 6x + 1$$

$$\operatorname{As} f(2x) = f(x)(\operatorname{Given})$$

$$\Rightarrow 4x^2 - 6x + 1 = x^2 - 3x + 1$$

$$\Rightarrow$$
 3x² - 3x = 0 \Rightarrow x² - x = 0 \Rightarrow x(x-1) = 0

$$\Rightarrow x = 0, 1.$$

10.

Given
$$f(x) = \sqrt{x-1}$$
,

for Df, f(x) must be a real number

$$\Rightarrow \sqrt{x-1}$$
 must be a real number

$$\Rightarrow x-1 \ge 0 \Rightarrow x \ge 1$$

$$\Rightarrow Df = [1, \infty]$$

for Rf, let
$$y = f(x) = \sqrt{x-1}$$

$$\Rightarrow \sqrt{x-1} \ge 0 \Rightarrow y \ge 0$$

$$\Rightarrow Rf = [0, \infty]$$

Long Answer:

1.

Given
$$f(x) = \frac{1}{x}, x \in \mathbb{R}, x \neq 0$$

Let
$$y = f(x) = i\ell y = \frac{1}{x}, x \in \mathbb{R}, x \neq 0$$

(Fig for Answer 11)

œ	-4	-2	-1	-0.5	-0.25	0.5	1	2	4
$y = \frac{1}{x}$	-0.25	-0.5	-1	-2	-4	2	1	0.5	0.25

Plot the points shown is the above table and join there points by a free hand drawing.

Portion of the graph are shown the right margin

From the graph, it is clear that Rf = R - [0]

This function is called reciprocal function.

2.

If
$$f(x) = x - \frac{1}{x}$$
, prove that $[f(x)]^3 = f(x^3) + f(\frac{1}{x})$

Given
$$f(x) = x - \frac{1}{x}$$
, $Df = R - [0]$

$$\Rightarrow f\left(x^{3}\right) = x^{3} - \frac{1}{x^{3}} \text{ and } f\left(\frac{1}{x}\right) = \frac{1}{x} - \frac{1}{\frac{1}{x}} = \frac{1}{x} - x \dots (i)$$

$$\left[f\left(x\right) \right]^{3} = \left(x - \frac{1}{x}\right)^{3} = x^{3} - \frac{1}{x^{3}} - 3x \cdot \frac{1}{x} \left(x - \frac{1}{x}\right)$$

$$= x^3 - \frac{1}{x^3} - 3\left(x - \frac{1}{x}\right)$$

$$= x^3 - \frac{1}{x^3} + 3\left(\frac{1}{x} - x\right)$$

$$= f\left(x^{3}\right) + 3f\left(\frac{1}{x}\right) \left[\text{using }(i)\right]$$

3.

(i) Given, f(x) i.e. y = x - 1 which is first degree equation in x, y and hence it represents a straight line. Two points are sufficient to determine straight lint uniquely

Table of values

x	0	1	
у	-1	1	

A portion of the graph is shown in the figure from the graph, it is clear that y takes all real values. It therefore that

$$R_F = R$$

(ii) Given
$$f(x) = \frac{x^2 - 1}{x - 1} \Rightarrow D_F = R - (1)$$

Let
$$y = f(x) = \frac{x^2 - 1}{x - 1} = x + 1(\because x \neq 1)$$

i.e y = x + 1 which is a first degree equation is and hence it represents a straight line. Two points are sufficient to determine a straight line uniquely

Table of values

х	-1	0	
y	0	1	ì

A portion of the graph is shown is the figure from the graph it is clear that y takes all real values except 2. It fallows that $R_F = R - [2]$.

4.

Given
$$f(x) = 5x^2 + 2, x \in R$$

(i)
$$f(3) = 5 \times 3^2 + 2 = 5 \times 9 + 2 = 47$$

(ii)
$$f(2) = 5 \times 2^2 + 2 = 5 \times 4 + 2 = 22$$

$$f(3) \times f(2) = 47 \times 22 = 1034$$

(iii)
$$f(x) = 22$$

$$\Rightarrow$$
 5x² + 2 = 22

$$\Rightarrow 5x^2 = 20$$

$$\Rightarrow x^2 = 4$$

$$\Rightarrow x = 2, -2$$

5.

$$f(x) = \frac{9x}{5} + 32(given)$$

(i)
$$f(0) = \left(\frac{9 \times 0}{5} + 32\right) = 32 \Rightarrow f(0) = 32 \Rightarrow 0 c = 32 F$$

(ii)
$$f(-10) = \left(\frac{9 \times (-10)}{5} + 32\right) = 14 \Rightarrow f(-10) = 14^{\circ} \Rightarrow (-10)^{\circ} c = 14^{\circ} F$$

(iii)
$$f(x) = 212 \Leftrightarrow \frac{9x}{5} + 32 = 212 \Leftrightarrow 9x = 5 \times (180)$$

 $\Leftrightarrow x = 100$

$$\therefore 212^{\circ} f = 100^{\circ} c$$

Assertion Reason Answer:

- 1. (i) Both assertion and reason are true and reason is the correct explanation of assertion.
- 2. (i) Both assertion and reason are true and reason is the correct explanation of assertion.