

Swotters Academy

Fest / Exam Name: Maths - Relations And Functions	Standard: 11th Science	Subject: Mathematics	
Student Name:	Section:	Roll No.:	
		Questions: 28 Time: 01:45 hh:mm Marks: 5	
Instructions			

	Rough work at the last page shoul Honesty is the best policy.	u be in proper manner t	00			
			SECTION-A			
Q1.	A relation R is defined from the set of integers to the set of real numbers as $(x, y) = R$ if $x^2 + y^2 = 16$ then the domain of R is.				1 Mark	
Q2.	A $(0, 4, 4)$ Consider the following statement 1. If $n(A) = p$ and $n(B) = q$ then 2. $A \times f = f$ 3. In general, $A \times B^1 B \times A$ Which of the above statements a	$n(A \times B) = pq$	C (0, -4, -4)	D None of these	1 Mari	
Q3.	A only (i) $\label{eq:continuous} \text{The domain of } \tan^{-1}(2x+1) \text{ is:}$	B only (ii)	C only (iii)	D All the above	1 Mari	
	A R.		B R $-\frac{1}{2}$ D None of these			
Q4.	C R $-\frac{-1}{2}$ The period of the function f(x) = s	$\sin\left(\frac{2\pi x}{x}\right) + \cos\left(\frac{\pi x}{x}\right)$	D None of these		1 Mark	
-	A 3	B 4	C 12	D None of these		
Q5.	Choose the correct answers: The domain and range of the real	function f defined by f(1 Mark	
	A Domain = R, Range = {-1, 1}		B Domain = R - {1}, Range			
06	C Domain = R - {4}, Range = {-1, 1} If two sets A and B are having 99 elements in common, then the number of elements common to each of the sets A × B and B × A are.				1 Mark	
Qu.	A 2 ⁹⁹	В 99 ²	C 100	D 18	1 141011	
Q7.	$f(x) = \frac{ x }{x}$ for x#0 and 0 for x=0}	Which function is this?			1 Mark	
Q8.	A Constant Choose the correct answers: If $[x]^2 - 5[x] + 6 = 0$, where [.] den	B Modulus ote the greatest integer f	C Identity	D Signum function	1 Mark	
Q9.	A	B $x \Rightarrow (2, 3]$ s $(\frac{\pi x}{3})$ - tan $(\frac{\pi x}{4})$ is peri	$\mathbf{C} \ \mathbf{x} \Rightarrow [2,3]$ odic with period.	D x ⇒ [2, 4)	1 Mark	
	A 4	B 6	C 8	D 12	1 Mark	
Q10.	 State whether each of the following statements are true or false. If the statement is false, rewrite the given statement correctly. If A and B are non-empty sets, then A × B is a non-empty set of ordered pairs (x, y) such that x ∈ A and y ∈ B. 					
Q11.	. State whether each of the following statements are true or false. If the statement is false, rewrite the given statement correctly. If $A = \{1,2\}, B = \{3,4\}, \text{ then } A \times (B \cap \phi) = \phi$.					
Q12.	Directions: In the following quest Assertion: The range of the function Reason: The range of the function	ion f(x) = 2 -3x, $x \in R$, x	ertion (A) is followed by a statement of re > 0 is R.	ason (R). Mark the correct choice as:	1 Mark	
	A A is true, R is true; R is a correc	t explanation of A.	B A is true, R is true; R is I	not a correct explanation of A.		
Q13.	C A is true; R is false. D A is false; R is true. I. If and g are two real valued function defined as $f(x) = 2x + 1$, $g(x) = x^2 + 1$, then find. fg					
Q14.	. If $f(x) = \cos\left[\pi^2\right]x + \cos\left[-\pi^2\right]x$, where [x] denotes the greatest integer less than or equal to x, then write the value of $f(\pi)$					
Q15.	5. If $A = \{1, 2, 3\}$, $B = \{3, 8\}$, then $(A \cup B)'(A \cap B)$ is equal to.					
Q16.	If $f(x) = \frac{x \cdot 1^3}{x^3}$ 'then $f(x) + f(\frac{1}{x})$ is	equal to:			1 Mark	
	A $2x^3$		B 2. \(\frac{1}{x^5}\)			
	c 0		D 1			
			SECTION-B			

2.8 3.6 4.16 4.18 5.1fn (A) = 3 and B = (2, 3, 4, 6, 7, 8), then the number of relations from A to B is: 1.2 2 2.2 6 3.2 18 4.2 9

Q17. Let $A = \{x, y, z\}$ and $B = \{1, 2\}$. Find the number of relations from A to B. 2 Marks Q18. In following case, find a and b. $\left(\frac{a}{4},a-2b\right)=(0,6+b)$ 2 Marks **Q19.** Find the domain and range of the following real valued functions: $f(x) = \frac{ax-b}{cx-d}$ 2 Marks Q20. If A = {1, 2, 3}, B = {4, 5, 6}, the given following are relations from A to B? Give reason in support of your answer. **Q21.** Let f and g be real functions defined by f(x) = 2x + 1 and g(x) = 4x - 7. For what real numbers x, f(x) < g(x)? Q22. Let A and B be two sets such that n(A) = 3 and n(B) = 2. If (x, 1), (y, 2), (z, 1) are in A × B, find A and B, where x, y and z are distinct elements. •6- in set-builder form
 roster form. What is its domain and range? Q24. Let $A = \{1, 2, 3, 4, 6\}$. Let R be the relation on A defined by $\{(a, b): a, b \in A, b \text{ is exactly divisible by } a\}$. 3 Marks 1. Write R in roster form
2. Find the domain of R.
3. Find the range of R. 3. Find the range of R.

Q25. If a function $f: \mathbb{R} \to \mathbb{R}$ be defined by: $f(\mathbf{x}) = \begin{cases} 3x - 2, & x < 0 \\ 1, & x = 0 \\ 4x + 1, & x > 0 \end{cases}$ Find: f(1), f(-1), f(0) and f(2) **Q26.** If $f(x)=x^3-\frac{1}{x^3},$ show that $f(x)+f\Big(\frac{1}{x}\Big)=0$ 3 Marks SECTION-C Q27. Define a relation R on the set N of natural numbers by R = {(x, y) : y = x + 5, x is a natural number less than 4; x, y ∈ N}. Depict this relationship 4 Marks using roster form. Write down the domain and the range. Q28. Representation of a Relation A relation can be represented algebraically by roster form or by set-builder form and visually it can be represented 5 Marks Now an arrow diagram which are given below: Roster form In this form, we represent the relation by the set of all ordered pairs belongs to R: Set-builder form In this form, we represent the relation R from set A to set B as $R = \{(a,b): a \in A, b \in B\}$ and the rule which relate the set outlose from in this form, we represent the relation k from set A to set B as $k = \{1, 0, 0\}$: $A \in A$, $B \in B\}$ and the rule which relate the elements of A and B.

Arrow diagram To represent a relation by an arrow diagram, we draw arrows from first element to second element of all ordered pairs belonging to relation B: Based on the above topics, answer the following questions ased on the above topics, answer the following questions.
1. Re $\{(s,b): 2a+b=5; a,b\in W\}$ as the set of ordered pairs (in roster form) is:
1. Re $\{(s,0), (3,1), (1,2)\}$
2. Re $\{(0,5), (1,3), (1,2)\}$
3. Re $\{(0,5), (1,3), (2,1)\}$
4. None of the above
2. The relation between sets P andQ given by an arrow diagram in roster form will be:

1. R = {(9, 3), (9, -3), (4, 2), (4, -2), (25, 5), (25, -5)} 2. R = {(9, 3), (4, 2), (25, 5)}

3. R = {(9, -3), (4, -2), (25, -5)}

4. None of the above 4. None of the above $\begin{array}{ll} \text{A. None of the above} \\ \text{3. The relation given in (ii) can be written in set-builder form as:} \\ 1. R = \{(x,y): x \in p, y \in Q \text{ and } x \text{ is the square of } y\} \\ 2. R = \{(x,y): x \in p, y \in Q \text{ and } y \text{ is the square of } y\} \\ 3. R = \{(x,y): x \in p, y \in Q \text{ and } x = \pm y\} \\ 4. \text{ None of the above} \end{array}$