MATHEMATICS

Chapter 4: Practical Geometry

Important Questions

Multiple Choice Questions-

Question 1. Sum of all interior angles of a polygon with (n) sides is given by

- (a) $(n 2) \times 180^{\circ}$
- (b) $n 2 \times 180^{\circ}$
- (c) $(n + 2) \times 180^{\circ}$
- (d) $(n + 2) \times 180^{\circ}$

Question 2. Polygons that have no portions of their diagonals in their exteriors are called

- (a) triangles
- (b) convex
- (c) concave
- (d) squares

Question 3. What is the number of sides in Hexagon?

- (a) 4
- (b) 7
- (c) 6
- (d) 5

Question 4. A parallelogram must be a rectangle if its diagonals

- (a) bisect the angles to which they are drawn
- (b) are perpendicular to each other
- (c) bisect each other
- (d) are congruent

Question 5. Diagonals of a rectangle:

- (a) equal to each other
- (b) not equal
- (c) one is double of the other
- (d) none of these

Question 6. A simple closed curve made up of only ______ is called a polygon

- (a) lines
- (b) curves
- (c) closed curves

MATHS PRACTICAL GEOMETRY

(d) line segments
Question 7. To construct a quadrilateral uniquely, it is necessary to know at least of its parts.
(a) 5
(b) 4
(c) 3
(d) 2
Question 8. All the angles of a regular polygon are of
(a) 90°
(b) 60°
(c) equal length
(d) equal measure
Question 9. The diagonals of a square bisect each other at angle.
(a) acute
(b) right
(c) obtuse
(d) reflex
Question 10. The quadrilateral whose diagonals are equal and bisect each other at right angle is
(a) Triangle
(b) Square
(c) Rhombus
(d) None of these
Very Short Questions:

Short Questions:

Long Questions:

- 1. Construct a quadrilateral PQRS, given that QR = 4.5 cm, PS = 5.5 cm, RS = 5 cm and the diagonal PR = 5.5 cm and diagonal SQ = 7 cm.
- 2. Construct a quadrilateral ABCD in which AB = 4 cm, BC = 3.5 cm, CD = 5 cm, AD = 5.5 cm and \angle B = 75° .
- **3.** Construct a square whose side is 5 cm.
- **4.** Construct a rhombus ABCD in which AB = 5.8 cm and AC = 7.5 cm.
- **5.** Construct a rhombus whose diagonals are 6 cm and 8 cm.

- **6.** Construct a rectangle whose diagonal is 5 cm and the angle between the diagonal is 50°.
- 7. Construct a quadrilateral ABCD in which BC = 4 cm, \angle B = 60°, \angle C = 135°, AB = 5 cm and \angle A = 90°.
- **8.** Construct a parallelogram ABCD in which AB = 5.5 cm, AC = 7 cm and BD = 8 cm.
- 9. Construct a rhombus PAIR, given that PA = 6 cm and angle $\angle A = 110^{\circ}$.

Answer Key-

Multiple Choice questions-

- **1.** (a) $(n-2) \times 180^{\circ}$
- **2.** (b) convex
- **3.** (c) 6
- 4. (d) are congruent
- 5. (a) equal to each other
- **6.** (d) line segments
- **7.** (a) 5
- 8. (d) equal measure
- **9.** (b) right
- **10.** (b) Square

Very Short Answer:

Short Answer:

Long Answer:

1.

Construction:

Step I: Draw QR = 4.5 cm.

Step II: Draw an arc with centre R and radius 5 cm.

MATHS PRACTICAL GEOMETRY

Step III: Draw another arc with centre Q and radius 7 cm to meet the previous arc at S.

Step IV: Join RS and QS.

Step V: Draw two arcs with centre S and R and radius 5.5 cm each to meet each other at P.

Step VI: Join RP, SP and PQ.

Thus PQRS is the required quadrilateral.

2.

Construction:

Step I: Draw AB = 4 cm.

Step II: Draw an angle of 75° at B and cut BC = 3.5 cm.

Step III: Draw an arc with centre C and radius 5 cm.

Step IV: Draw another arc with centre A and radius 5.5 cm to meet the previous arc at D.

Step V: Join CD and AD.

Thus ABCD is the required quadrilateral.

3.

Construction:

Step I: Draw AB = 5 cm.

Step II: Draw an angle of 90° at B and cut BC = 5 cm.

Step III: Draw two arcs with centre A and C and same radii of 5 cm which meet each other at D.

Step IV: Join AD and CD.

Thus, ABCD is the required square.

4.

Construction:

Step I: Draw AB = 5.8 cm.

Step II: Draw an arc with centre B and radius 5.8 cm.

Step III: Draw another arc with centre A and radius 7.5 cm to meet the previous arc at C.

Step IV: Draw two arcs with centres A and C and of the same radius 5.8 cm to meet each other at D.

Step V: Join BC, AC, CD and AD.

Thus ABCD is the required rhombus.

5.

Construction:

Step I: Draw SQ = 8 cm.

Step II: Draw a right bisector of SQ at O.

Step III: Draw two arcs with centre O and radius 3 cm each to cut the right bisector at P and R.

Step TV: Join PQ, QR, RS and SP.

Thus PQRS is the required rhombus.

6.

Construction:

Step I: Draw AC = 5 cm.

Step II: Draw the right bisector of AC at O.

Step III: Draw an angle of 50° at O and product both sides.

Step IV: Draw two arcs with centre O and of the same radius 2.5 cm to cut at B and D.

Step V: Join AB, BC, CD and DA.

Thus, ABCD is the required rectangle.

7.

Construction:

Step I: Draw AB = 5 cm.

Step II: Draw the angle of 60° at B and cut BC = 4 cm.

Step III: Draw an angle of 135° at C and angle of 90° at A which meet each other at D.

Thus, ABCD is the required quadrilateral.

8.

Construction:

Step I: Draw AB = 5.5 cm.

Step II: Draw an arc with centre B and radius $\frac{8}{2}$ cm = 4 cm.

Step III: Draw another arc with centre A and radius $\frac{7}{2}$ cm = 3.5 cm which cuts the previous arc at O.

Step IV: Join AO and produce to C such that AO = OC.

Step V: Join BO and produce to D such that BO = OD.

Step VI: Join BC, CD and AD.

Thus ABCD is the required parallelogram.

9.

Since in a rhombus, all sides are equal, so PA = AI = IR = RP = 6 cm

Also, rhombus is a parallelogram

so, adjacent angle, $\angle I = 180^{\circ} - 110^{\circ} = 70^{\circ}$

Steps of construction

Step I. Draw AI = 6 cm

Step II. Draw ray \overline{AX} such that $\angle IAX = 110^{\circ}$ and draw \overline{IY} such that $\angle AIY = 70^{\circ}$.

MATHS PRACTICAL GEOMETRY

Step III. With A and I as centres and radius 6 cm draw arcs intersecting AX and IY at P and R respectively.

Step IV. Join PR.

Thus, PAIR is the required rhombus.

