
MATHEMATICS

Chapter 6: Squares and Square Roots

Important Questions

Multiple Choice Questions-

(d) 970

Question 7. How many natural numbers lie between 92 and 102?

- (a) 15
- (b) 19
- (c) 18
- (d) 17

Question 8. The largest perfect square between 4 and 50 is

- (a) 25
- (b) 36
- (c)49
- (d) 45

Question 9. Sum of squares of two numbers is 145. If square root of one number is 3, find the other number.

- (a) 136
- (b) 8
- (c)9
- (d) 64

Question 10. Find the square of 39.

- (a) 1500
- (b) 78
- (c) 1521
- (d) none of these

Very Short Questions:

- 1. Find the perfect square numbers between 40 and 50.
- **2.** Which of the following 24^2 , 49^2 , 77^2 , 131^2 or 189^2 end with digit 1?
- **3.** Find the value of each of the following without calculating squares.
 - (i) $27^2 26^2$
 - (ii) $118^2 117^2$
- **4.** Write each of the following numbers as difference of the square of two consecutive natural numbers.
 - (i) 49
 - (ii) 75
 - (iii) 125

- **5.** Write down the following as sum of odd numbers.
 - (i) 7^2
 - (ii) 9²
- **6.** Express the following as the sum of two consecutive integers.
 - (i) 15^2
 - (ii) 19²
- **7.** Find the product of the following:
 - (i) 23×25
 - (ii) 41×43
- **8.** Find the squares of:
 - (i) $\frac{-3}{7}$
 - (ii) $\frac{-9}{17}$

Short Questions:

- 1. Check whether (6, 8, 10) is a Pythagorean triplet.
- 2. Using property, find the value of the following:
 - (i) $19^2 18^2$
 - (ii) $23^2 22^2$
- **3.** Using the prime factorisation method, find which of the following numbers are not perfect squares.
 - (i) 768
 - (ii) 1296
- **4.** Which of the following triplets are Pythagorean?
 - (i) (14, 48, 50)
 - (ii) (18, 79, 82)
- **5.** Find the square root of the following using successive subtraction of odd numbers starting from 1.
 - (i) 169
 - (ii) 81
 - (iii) 225
- **6.** Find the square root of the following using prime factorisation.
 - (i) 441
 - (ii) 2025

- (iii) 7056
- (iv) 4096
- **7.** Find the least square number which is divisible by each of the number 4, 8 and 12.
- **8.** Find the square roots of the following decimal numbers
 - (i) 1056.25
 - (ii) 10020.01

Long Questions:

- 1. What is the least number that must be subtracted from 3793 so as to get a perfect square? Also, find the square root of the number so obtained.
- 2. Simplify: $\sqrt{900} + \sqrt{0.09} + \sqrt{0.000009}$
- **3.** Find the value of x if

$$\sqrt{1369} + \sqrt{0.0615 + x} = 37.25$$

4. Simplify:

$$\sqrt{\frac{(0.105 + 0.024 - 0.008) \times 0.85}{1.7 \times 0.022 \times 0.25}}$$

5. A ladder 10 m long rests against a vertical wall. If the foot of the ladder is 6 m away from the wall and the ladder just reaches the top of the wall, how high is the wall?

- **6.** Find the length of a diagonal of a rectangle with dimensions 20 m by 15 m.
- 7. The area of a rectangular field whose length is twice its breadth is 2450 m2. Find the perimeter of the field.
- 8. Which of the following numbers are perfect squares? 11, 12, 16, 32, 36

Answer Key-

Multiple Choice questions-

- **1.** (a) 13
- **2.** (a) 5
- **3.** (d) 8
- **4.** (a) 1.1
- **5.** (c) 24
- **6.** (b) 961
- **7.** (c) 18
- **8.** (c) 49
- **9.** (b) 8
- **10.** (c) 1521

Very Short Answer:

- 1. Perfect square numbers between 40 and 50 = 49.
- 2. Only 49², 131² and 189² end with digit 1.
- 3. (i) $27^2 26^2 = 27 + 26 = 53$
 - (ii) $118^2 117^2 = 118 + 117 = 235$
- 4. (i) $49 = 2 \times 24 + 1$

$$49 = 25^2 - 24^2$$

(ii)
$$75 = 2 \times 37 + 1$$

$$75 = 38^2 - 37^2$$

(iii)
$$125 = 2 \times 62 + 1$$

$$125 = 63^2 - 62^2$$

- 5. (i) 72 = Sum of first 7 odd numbers = 1 + 3 + 5 + 7 + 9 + 11 + 13
 - (ii) 92 = Sum of first 9 odd numbers = 1 + 3 + 5 + 7 + 9 + 11 + 13 + 15 + 17

6.

$$(i)$$
 $15^2 = 225 = 112 + 113$

$$\because 112 = \frac{15^2 - 1}{2}$$
 and $113 = \frac{15^2 + 1}{2}$

$$(ii)$$
 $19^2 = 361 = 180 + 181$

$$180 = \frac{19^2 - 1}{2}$$
 and $181 = \frac{19^2 + 1}{2}$

7. (i) $23 \times 25 = (24 - 1)(24 + 1) = 24^2 - 1 = 576 - 1 = 575$

(ii) $41 \times 43 = (42 - 1)(42 + 1) = 42^2 - 1 = 1764 - 1 = 1763$

8.

(i)
$$\left(-\frac{3}{7}\right)^2 = \left(-\frac{3}{7}\right)\left(-\frac{3}{7}\right) = \frac{9}{49}$$

(ii)
$$\left(-\frac{9}{17}\right)^2 = \left(-\frac{9}{17}\right)\left(-\frac{9}{17}\right) = \frac{81}{289}$$

Short Answer:

1. 2m, $m^2 - 1$ and $m^2 + 1$ represent the Pythagorean triplet.

Let
$$2m = 6 \Rightarrow m = 3$$

$$m^2 - 1 = (3)^2 - 1 = 9 - 1 = 8$$

and
$$m^2 + 1 = (3)^2 + 1 = 9 + 1 = 10$$

Hence (6, 8, 10) is a Pythagorean triplet.

Alternative Method:

$$(6)^2 + (8)^2 = 36 + 64 = 100 = (10)^2$$

 \Rightarrow (6, 8, 10) is a Pythagorean triplet.

2. (i)
$$19^2 - 18^2 = 19 + 18 = 37$$

(ii)
$$23^2 - 22^2 = 23 + 22 = 45$$

3.

(i)	2	768	
	2	384	
	2	192	
- 0.0	2	96	
	2	48	
02 02 03 03 03	2	24	, harda
	2	12	
	2	6	
	3	3	
10.0		1	

$$768 = \underline{2 \times 2} \times \underline{2 \times 2} \times \underline{2 \times 2} \times \underline{2 \times 2} \times \underline{3}$$

Here, 3 is not in pair.

768 is not a perfect square.

(ii)	2	1296
	2	648
9.5	2	324
	2	162
188	3	81
	3	27
10.5	3	9
	3	3
		1

Here, there is no number left to make a pair.

1296 is a perfect square.

- 4. We know that 2m, $m^2 1$ and $m^2 + 1$ make Pythagorean triplets.
 - (i) For (14, 48, 50),

Put
$$2m = 14 \Rightarrow m = 7$$

$$m^2 - 1 = (7)^2 - 1 = 49 - 1 = 48$$

$$m^2 + 1 = (7)^2 + 1 = 49 + 1 = 50$$

Hence (14, 48, 50) is a Pythagorean triplet.

Put
$$2m = 18 \Rightarrow m = 9$$

$$m^2 - 1 = (9)^2 - 1 = 81 - 1 = 80$$

$$m^2 + 1 = (9)^2 + 1 = 81 + 1 = 82$$

Hence (18, 79, 82) is not a Pythagorean triplet

5. (i) 169 - 1 = 168, 168 - 3 = 165, 165 - 5 = 160, 160 - 7 = 153, 153 - 9 = 144, 144 - 11 = 133, 133 - 13 = 120, 120 - 15 = 105, 105 - 17 = 88, 88 - 19 = 69,

$$69 - 21 = 48, 48 - 23 = 25, 25 - 25 = 0$$

We have subtracted odd numbers 13 times to get 0.

$$\sqrt{169} = 13$$

(ii)
$$81 - 1 = 80$$
, $80 - 3 = 77$, $77 - 5 = 72$, $72 - 7 = 65$, $65 - 9 = 56$, $56 - 11 = 45$, $45 - 13 = 32$, $32 - 15 = 17$, $17 - 17 = 0$

We have subtracted 9 times to get 0.

$$\sqrt{81} = 9$$

(iii)
$$225 - 1 = 224$$
, $224 - 3 = 221$, $221 - 5 = 216$, $216 - 7 = 209$, $209 - 9 = 200$, $200 - 11 = 189$, $189 - 13 = 176$, $176 - 15 = 161$, $161 - 17 = 144$, $144 - 19 = 125$,

$$125 - 21 = 104$$
, $104 - 23 = 81$, $81 - 25 = 56$, $56 - 27 = 29$, $29 - 29 = 0$

We have subtracted 15 times to get 0.

$$\sqrt{225} = 15$$

6. (i)
$$441 = 3 \times 3 \times 7 \times 7$$

$$\sqrt{441} = 3 \times 7 = 21$$

3	441
3	147
7	49
7	7
	1

(ii)
$$2025 = 3 \times 3 \times 3 \times 3 \times 5 \times 5$$

$$\sqrt{2025} = 3 \times 3 \times 5 = 45$$

3	2025
3	675
3	225
3	75
5	25
5	5
	1

(iii)
$$7056 = 2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 7 \times 7$$

$$\sqrt{7056} = 2 \times 2 \times 3 \times 7 = 84$$

2	7056
2	3528
2	1764
2	882
3	441
3	147
7	49
7	7
	1

$$\sqrt{4096} = 2 \times 2 \times 2 \times 2 \times 2 \times 2 = 64$$

2	4096
2	2048
2	1024
2	512
2	256
2	128
2	64
2	32
2	16
2	8
2	4
2	2
	1

7. LCM of 4, 8, 12 is the least number divisible by each of them.

LCM of 4, 8 and 12 = 24

$$24 = 2 \times 2 \times 2 \times 3$$

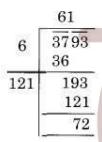
To make it perfect square multiply 24 by the product of unpaired numbers, i.e., $2 \times 3 = 6$

Required number = $24 \times 6 = 144$

2	4, 8, 12
2	2, 4, 6
2	1, 2, 3
3	1, 1, 3
=0/15	1, 1, 1

8.

	32.5	•
3	1056.25 9) ++
62	156 124	wouers
645	3225 3225 0	


Hence $\sqrt{1056.25} = 32.5$

$$\begin{array}{c|c}
(ii) & 100.1 \\
1 & 100 \overline{20.01} \\
\hline
2001 & 002001 \\
\hline
2001 & 0
\end{array}$$

Hence
$$\sqrt{10020.01} = 100.1$$

Long Answer:

1. First, we find the square root of 3793 by division method.

Here, we get a remainder 72

Required perfect square number = 3793 - 72 = 3721 and $\sqrt{3721} = 61$

2. Simplify: $\sqrt{900} + \sqrt{0.09} + \sqrt{0.000009}$

Solution:

We know that $V(ab) = Va \times Vb$

$$\sqrt{900} = \sqrt{(9 \times 100)} = \sqrt{9} \times \sqrt{100} = 3 \times 10 = 30$$

$$\sqrt{0.09} = \sqrt{(0.3 \times 0.3)} = 0.3$$

$$\sqrt{0.000009} = \sqrt{(0.003 \times 0.003)} = 0.003$$

$$\sqrt{900} + \sqrt{0.09} + \sqrt{0.000009} = 30 + 0.3 + 0.003 = 30.303$$

3.

We have
$$\sqrt{1369} + \sqrt{0.0615 + x} = 37.25$$

$$\because \qquad \sqrt{1369} = 37$$

$$\therefore 37 + \sqrt{0.0615 + x} = 37.25$$

$$\Rightarrow \sqrt{0.0615 + x} = 37.25 - 37$$

$$\Rightarrow \qquad \sqrt{0.0615 + x} = 0.25$$

Squaring both sides, we have

$$0.0615 + x = 0.0625$$

$$\Rightarrow$$
 $x = 0.0625 - 0.0615$

$$x = 0.0010$$

Hence x = 0.001

4.

$$\sqrt{\frac{(0.105 + 0.024 - 0.008) \times 0.85}{1.7 \times 0.022 \times 0.25}}$$

$$= \sqrt{\frac{(0.129 - 0.008) \times 0.85}{1.7 \times 0.022 \times 0.25}}$$

$$= \sqrt{\frac{0.121 \times 0.85}{1.7 \times 0.22 \times 0.25}}$$

$$= \sqrt{\frac{121^{11} \times 85^{18}}{1.7 \times 22 \times 25 \times 5}}$$

[Removing the decimals]

$$= \sqrt{\frac{11}{10}} = \sqrt{1.1}$$

Hence, the required result = $\sqrt{1.1}$.

5. Let AC be the ladder.

Therefore, AC = 10 m

Let BC be the distance between the foot of the ladder and the wall.

Therefore, BC = 6 m

ΔABC forms a right-angled triangle, right angled at B.

By Pythagoras theorem,

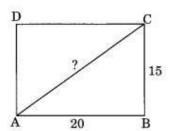
$$AC^2 = AB^2 + BC^2$$

$$10^2 = AB^2 + 6^2$$

or
$$AB^2 = 10^2 - 6^2 = 100 - 36 = 64$$

or
$$AB = \sqrt{64} = 8m$$

Hence, the wall is 8 m high.


6. Using Pythagoras theorem, we have Length of diagonal of the rectangle = $\sqrt{l^2 + b^2}$ units

$$= \sqrt{(20^2 + 15^2)} \text{ m}$$

$$= \sqrt{400 + 225} \text{ m}$$

$$= \sqrt{625} \text{ m}$$

$$= 25 \text{ m}$$

Hence, the length of the diagonal is 25 m.

7. Let the breadth of the field be x metres. The length of the field 2x metres. Therefore, area of the rectangular field = length × breadth = $(2x)(x) = (2x^2)$ m². Given that area is 2450 m².

Therefore, $2x^2 = 2450$

$$\Rightarrow$$
 $x^2 = 1225$

$$\Rightarrow$$
 x = $\sqrt{1225}$ or x = 35 m

Hence, breadth = 35 m

and length = $35 \times 2 = 70 \text{ m}$

Perimeter of the field = $2 (l + b) = 2(70 + 35) m = 2 \times 105 m = 210 m$.

- 11 is not a perfect square because it is a prime number.
 - 12 is not a perfect square because its units digit is 2.
 - 16 is a perfect square because 16 = 4 x 4.
 - 32 is not a perfect square because its units digit is 2.
 - 36 is a perfect square because 36 = 6 x 6.