MATHEMATICS

Chapter 7: Cubes and Cube Roots

Important Questions

Multiple Choice Questions-

Question 7. If volume of cube is 4913cm³ then length of side of cube is

- (a) 16 cm
- (b) 17 cm
- (c) 18 cm
- (d) 19 cm

Question 8. The square of a natural number subtracts from its cube comes 100. The number is ______.

- (a) 2
- (b) 3
- (c) 5
- (d) 1

Question 9. The value of 5³ is _____

- (a) 125
- (b) 15
- (c) 10
- (d) 75

Question 10. If $(2744)^{\frac{1}{3}} = 2p + 2$, then the value of P is

- (a) 3
- (b) 6
- (c) 2
- (d) 8

Very Short Questions:

- 1. Find the cubes of the following:
 - (a) 12
 - (b) -6
 - (c) $\frac{2}{3}$
 - (d) $\frac{-5}{6}$
- **2.** Find the cubes of the following:
 - (a) 0.3
 - (b) 0.8
 - (c) .001

(d)
$$2 - 0.3$$

- **3.** Is 135 a perfect cube?
- **4.** Find the cube roots of the following:
 - (a) 1728
 - (b) 3375
- 5. Examine if (i) 200 (ii) 864 are perfect cubes.
- **6.** Find the smallest number by which 1323 may be multiplied so that the product is a perfect cube.

Short Questions:

- 1. What is the smallest number by which 2916 should be divided so that the quotient is a perfect cube?
- 2. Check whether 1728 is a perfect cube by using prime factorisation.
- 3. Using prime factorisation, find the cube root of 5832.
- 4. Show that $\sqrt[3]{27} \times \sqrt[3]{125} = \sqrt[3]{27} \times 125$

Sim

- 5.
- **6.** Find the cube roots of
 - (i) $4\frac{12}{125}$
 - (ii) -0.729

Long Questions:

1. Express the following numbers as the sum of odd numbers using the given pattern.

$$5^3 - 4^3 = 1 + \frac{5 \times 4}{2} \times 6 = 61$$

$$7^3 - 6^3 = 1 + \frac{7 \times 6}{2} \times 6 = 127$$

2. Observe the following pattern and complete the blank spaces.

$$2^3 - 1^3 = 1 + \frac{2 \times 1}{2} \times 6 = 7$$

$$\therefore$$
 2³ = 1 + 7 = 8

$$3^3 - 2^3 = 1 + \frac{3 \times 2}{2} \times 6 = 19$$

$$3^3 = 2^3 + 19$$

$$\Rightarrow 3^3 = 1 + 7 + 19$$

$$(ii) 6^3 =$$

$$(v) \ 11^3 =$$

- Find the cubes of the following numbers: (i) 7, (ii) 12, (iii) 21, (iv) 100, (v) 3. 302
- 4. By what number would you multiply 231525 to make it a perfect cube?

Answer Key-

Multiple Choice questions-

- **1.** (a) 2
- 2. (b) ones digit
- **3.** (a) 2
- **4.** (b) $\sqrt[3]{}$
- **5.** (c) 11
- 6. (b) cube numbers
- **7.** (b) 17 cm
- **8.** (c) 5
- **9.** (a) 125
- **10.** (b) 6

Very Short Answer:

1.

(a)
$$12^3 = 12 \times 12 \times 12 = 1728$$

(b)
$$(-6)^3 = (-6) \times (-6) \times (-6) = -216$$

(c)
$$\left(\frac{2}{3}\right)^3 = \frac{2}{3} \times \frac{2}{3} \times \frac{2}{3} = \frac{8}{27}$$

$$(d)\left(\frac{-5}{6}\right)^3 = \left(\frac{-5}{6}\right) \times \left(\frac{-5}{6}\right) \times \left(\frac{-5}{6}\right) = \frac{-125}{216}$$

2. (a)
$$(0.3)^3 = 0.3 \times 0.3 \times 0.3 = 0.027$$

(b)
$$(0.8)^3 = 0.8 \times 0.8 \times 0.8 = 0.512$$

(c)
$$(0.001)^3 = (0.001) \times (0.001) \times (0.001) = 0.000000001$$

(d)
$$(2-0.3)^3 = (1.7)^3 = 1.7 \times 1.7 \times 1.7 = 4.913$$

3. Prime factorisation of 135, is:

$$135 = 3 \times 3 \times 3 \times 5$$

We find that on making triplet, the number 5 does not make a group of the triplet.

Hence, 135 is not a perfect cube.

3	135
3	45
3	15
5	5
	1

4.

	4	1120
	2	864
(a) Prime factorisation of 1728 is:	2	432
	2	216
$1728 = 2 \times 2 \times 2 \times 2 \times 2 \times 2$	2	108
$\times 3 \times 3 \times 3$	2	54

$$= 2^{3} \times 2^{3} \times 3^{3}$$

$$\therefore \sqrt[3]{1728} = 2 \times 2 \times 3 = 12$$

$$3 \quad 27$$

$$3 \quad 9$$

$$3 \quad 3$$

(b) We find the prime factorisation of 3375 as follows:

1010ws.

$$3375 = 3 \times 3 \times 3 \times 5 \times 5 \times 5$$

 $= 3^3 \times 5^3$
 $\therefore \sqrt[3]{3375}$
 $= 3 \times 5$
 $= 15$
3 3375
3 375
5 125
5 25
5 5

5. (i)
$$200 = 2 \times 2 \times 2 \times 5 \times 5$$

If we form triplet of equal factors, the number 2 forms a group of three whereas 5 does not do it.

Therefore, 200 is not a perfect cube.

2	200
2	100
2	50
5	25
5	5
	1

(ii) We have $864 = 2 \times 2 \times 2 \times 2 \times 2$

If we form triplet of equal factors, the number 2 and 3 form a group of three whereas another group of 2's does not do so.

Therefore, 864 is not a perfect cube.

2	864
2	432
2	216
2	108
2	54
3	27
3	9
3	3
	1

Since we required one more 7 to make a triplet of 7.

Therefore 7 is the smallest number by which 1323 may be multiplied to make it a perfect cube.

3	1323
3	441
3	147
7	49
7	7
	1

Short Answer:

1. Prime factorisation of

$$2916 = 2 \times 2 \times 3 \times 3 \times 3 \times 3 \times 3 \times 3$$

Since we required one more 2 to make a triplet

Therefore, the required smallest number by which 2916 should be divided to

make it a perfect cube is $2 \times 2 = 4$, i.e., $2916 \div 4 = 729$ which is a perfect cube.

2	2916
2	1458
3	729
3	243
3	81
3	27
3	9
3	3
	1

2. Prime factorisation of 1728 is

$$1728 = 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3$$

Since all prime factors can be grouped in triplets.

Therefore, 1728 is a perfect cube.

3.

The prime factorisation of 5832 is

 $5832 = 2 \times 2 \times 2 \times 3 \times 3 \times 3$

2 2916 2 1458

5832

 $\times 3 \times 3 \times 3$

3 729

Therefore,

3 243

 $\sqrt[3]{5832} = \sqrt[3]{2 \times 2 \times 2 \times 3 \times 3} \times 3 \times 3 \times 3 \times 3 \times 3$

3 81 3 27

 $= 2 \times 3 \times 3 = 18$

3 9 3

4.

LHS =
$$\sqrt[3]{27} \times \sqrt[3]{125}$$

$$= \sqrt[3]{3 \times 3 \times 3} \times \sqrt[3]{5 \times 5 \times 5}$$

$$= \sqrt[3]{3^3} \times \sqrt[3]{5^3} = 3 \times 5 = 15$$

$$RHS = \sqrt[3]{27 \times 125}$$

$$= \sqrt[3]{3 \times 3 \times 3 \times 5 \times 5 \times 5}$$

$$=\sqrt[3]{3^3 \times 5^3} = 3 \times 5 = 15$$

Hence, LHS = RHS

5.

$$\sqrt[3]{5 - \frac{10}{27}} = \sqrt[3]{\frac{5 \times 27 - 10}{27}}$$

$$=\sqrt[3]{\frac{135-10}{27}}=\sqrt[3]{\frac{125}{27}}$$

$$= \sqrt[3]{\frac{5 \times 5 \times 5}{3 \times 3 \times 3}} = \sqrt[3]{\frac{5^3}{3^3}} = \frac{5}{3}$$

6.

(i)
$$\sqrt[3]{4} \frac{12}{125} = \sqrt[3]{\frac{4 \times 125 + 12}{125}} = \sqrt[3]{\frac{500 + 12}{125}}$$

$$= \sqrt[3]{\frac{512}{125}}$$

$$= \sqrt[3]{\frac{2 \times 2 \times 2}{5 \times 5 \times 5}}$$

$$= \sqrt[3]{\frac{2^3 \times 2^3 \times 2^3}{5^3}}$$

$$= \frac{2 \times 2 \times 2}{5} = \frac{8}{5}$$
(ii) $\sqrt[3]{-0.729} = \sqrt[3]{\frac{-729}{1000}}$

$$= \sqrt[3]{\frac{3 \times 3 \times 3 \times 3 \times 3 \times 3 \times 3}{10 \times 10 \times 10}}$$

$$= \sqrt[3]{\frac{3^3 \times 3^3}{10^3}}$$

$$= -\frac{3 \times 3}{10} = -\frac{9}{10} = -0.9$$

Long Answer:

1.

(i)
$$9^3 - 8^3 = 1 + \frac{9 \times 8}{2} \times 6 = 217$$

(ii)
$$12^3 - 11^3 = 1 + \frac{12 \times 11}{2} \times 6 = 397$$

(iii)
$$51^3 - 50^3 = 1 + \frac{51 \times 50}{2} \times 6 = 7651$$

2.

(ii)
$$6^3 - 5^3 = 1 + \frac{6 \times 5}{2} \times 6 = 91$$

$$\therefore 6^3 = 5^3 + 91$$

$$= 1 + 7 + 19 + 37 + 61 + 91$$
(iii) $9^3 = 9^3 - 8^3 = 1 + \frac{9 \times 8}{2} \times 6 = 217$

$$\therefore 9^3 = 8^3 + 217$$

$$= 1 + 7 + 19 + 37 + 61 + 91$$

$$+ 127 + 169 + 217$$
(iv) $11^3 - 10^3 = 1 + \frac{11 \times 10}{2} \times 6 = 331$

$$\therefore 11^3 = 10^3 + 331$$

$$= 1 + 7 + 19 + 37 + 61$$

$$+ 91 + 127 + 169 + 217$$

3.

(i)
$$(7)^3 = 7 \times 7 \times 7 = 343$$

(ii)
$$(12)^3 = 12 \times 12 \times 12 = 1728$$

(iii)
$$(21)^3 = 21 \times 21 \times 21 = 9621$$

(iv)
$$(100)^3 = 100 \times 100 \times 100 = 1000000$$

(v)
$$(302)^3 = 302 \times 302 \times 302 = 27543608$$

4. The prime factorisation of 231525 is $5 \times 5 \times 3 \times 3 \times 3 \times 7 \times 7 \times 7$.

The number that must be multiplied in order that the above product is a perfect cube is 5.

+271 + 331

Therefore, Cube root of 231525×5 is $5 \times 3 \times 7 = 105$.