Mathematics

Chapter 7: Fractions

Important Questions

Multiple Choice questions:

Question 1. $\frac{2}{5} + \frac{3}{10} + \frac{11}{20}$ is equal to:

- (a) $\frac{25}{20}$ (b) $\frac{24}{20}$ (c) $\frac{28}{20}$
- (d) $\frac{19}{20}$

Question 2. Which of these makes a whole?

- (a) One half
- (b) Two halves
- (c) 3 halves
- (d) 5 halves

Question 3. Give a proper fraction whose numerator is 5 and denominator is 7.

wottens

- (a) $\frac{7}{5}$
- (b) $\frac{5}{7}$
- (c) $\frac{3}{7}$
- (d) None of these

Question 4. Mixed fraction $2\frac{3}{19}$ as improper fraction is:

- (a) $\frac{40}{19}$
- (b) $\frac{41}{19}$
- (c) $\frac{42}{19}$
- (d) none of these

Question 5. What is the simplified form of the product and $\frac{12}{24}$ and $\frac{36}{72}$

- (a) $\frac{16}{24}$ (b) $\frac{3}{5}$
- (c) 4
- (d) $\frac{1}{4}$

Question 6. The identity $(x + 3) (x + 4) = x^2 + 7x + 12$ is true for

- (a) Two values of x
- (b) One value of x
- (c) All value of x
- (d) None of Above

Question 7. What do you call fractions with different denominators?

- (a) Like fractions
- (b) Unlike fractions
- (c) Proper fractions
- (d) Improper fractions

Question 8. If the numerator and denominator of a fraction are equal then the fraction is:

(a) less than 1

- (b) equal to 1
- (c) greater than 1
- (d) none of these

Question 9. Mixed fraction of $\frac{17}{9}$ is:

- (a) $1\frac{7}{9}$
- (b) $1\frac{5}{9}$
- (c) $1\frac{3}{9}$
- (d) none of these

Question 10. A fraction with numerator 1 is called:

- (a) like fraction
- (b) proper fraction
- (c) unit fraction
- (d) mixed fraction

Question 11. A two-digit number is such that the product of the digits is 8. When 18 is added to the number, then the digits are reversed. The number is:

Swottens

- (b) 24
- (c) 42
- (d) 81

Question 12. A ______ is a number representing part of a whole.

- (a) Decimal
- (b) Proper fraction

- (c) Fraction
- (d) None of these

Question 13. By how much is $\frac{19}{20}$ greater than $\frac{2}{20}$?

- (a) $\frac{21}{20}$
- (b) $\frac{21}{40}$ (c) $\frac{17}{20}$
- (d) $\frac{17}{40}$

Question 14. What is the fractional form of five eighteenths?

- (a) $\frac{15}{18}$ (b) $\frac{18}{5}$ (c) $\frac{5}{18}$
- (d) 5.18

Question 15. What fraction of an hour is 40 minutes?

- (a) 1
- (b) $\frac{1}{3}$
- (c) $\frac{2}{3}$
- (d) None of these

Match The Following:

	Column I		Column II
1.		A.	<u>5</u> 9
2.		В.	$\frac{1}{2}$

	Column I		Column II
3.		C.	$\frac{1}{3}$
4.		D.	$\frac{4}{5}$

Fill in the blanks:

There is a large box of 36 small square boxes.

- 1. $\frac{1}{2}$ of it is _____.
- 2. $\frac{2}{3}$ of it is _____.
- 3. If I make a bench of 20 small boxes, the fraction becomes _____.
- **4.** _____ boxes are required if fraction is $\frac{5}{6}$.

True /False:

- 1. If a and b are any two integers such that a > b, then -a > -b.
- 2. $\ln \frac{3}{7}$, 3 is the part of whole.
- 3. On a number line, $\frac{2}{7}$ is to the right of zero.
- 4. $\frac{2}{5}$ is smaller than $\frac{1}{5}$.
- 5. $\frac{28}{45}$ and $\frac{3}{5}$ represent equivalent fractions.

Very Short Questions:

- 1. Solve: $\frac{16}{5} \frac{7}{5}$
- 2. Colour the part according to $\frac{3}{4}$.
- 3. Find the equivalent fraction $\frac{3}{5}$ having numerator $\frac{2}{7}$.

- (a) $\frac{8}{6}$
- (b) $\frac{44}{72}$
- **5.** Express the following as mixed fraction: $\frac{19}{6}$
- 6. Show $\frac{10}{10}$ on the number line.
- 7. Find the missing entries in the tables:

Fraction in standard form	Numerator	Denominator	Diagrammatic Representation
$\frac{6}{7}$	84	a	
b	5	6	
$\frac{9 \times 2}{5 \times 2}$	С	10	

8. Represent the following fractions on number line.

$$(a) \frac{1}{5}$$

(b)
$$\frac{3}{5}$$

9. Write the fractions showing the shaded portions:

10. Write all the natural numbers from 1 to 15. What fraction of them are prime numbers?

Short Questions:

1. Write the following fractions in ascending order:

$$\frac{2}{3}$$
, $\frac{2}{7}$, $\frac{2}{11}$, $\frac{2}{5}$ and $\frac{2}{9}$

- 2. Write any
 - (a) three proper and three improper fractions with denominator 7.
 - (b) two proper and two improper fractions with numerator 9.
- 3. Compare the following fractions:

(a)
$$\frac{4}{5}$$
 and $\frac{5}{6}$ (b) $\frac{3}{4}$ and $\frac{2}{5}$

- **4.** Find the sum of $1\frac{2}{3}$ and $3\frac{2}{5}$.
- **5.** Subtract $2\frac{3}{4}$ from $4\frac{1}{8}$.
- 6. Insert > or < to make each of the following true.

(a)
$$\frac{6}{7} \prod \frac{5}{7}$$
 (b) $\frac{10}{21} \prod \frac{10}{12}$ (c) $\frac{3}{7} \prod \frac{3}{8}$

Long Questions:

1. Find the difference between the greatest and the smallest fractions.

$$3\frac{3}{5}, 2\frac{4}{7}, \frac{19}{6}, \frac{18}{8}$$

2. Simran painted $\frac{2}{3}$ of the wall space in her room. Her brother Rahul helped and painted $\frac{1}{5}$ of the wall space. How much did they paint together? What part of the whole space is left unpainted?

Assertion and Reason Questions:

1.) Assertion (A) -3/7 is obtained when we divide a whole into seven equal parts and take three parts

Reason (R) – a fraction is a number representing part of a whole.

a) Both A and R are true and R is the correct explanation of A

- b) Both A and R are true but R is not the correct explanation of A
- c) A is true but R is false
- d) A is false but R is true
- **2.)** Assertion (A) -5/2 is obtained when we divide a whole into five equal parts and three parts

Reason (R) – a fraction is a number representing part of a whole.

- a) Both A and R are true and R is the correct explanation of A
- b) Both A and R are true but R is not the correct explanation of A
- c) A is true but R is false
- d) A is false but R is true

ANSWER KEY-

Multiple Choice questions:

- 1. (a) $\frac{25}{20}$
- 2. (b) Two halves
- 3. (b) $\frac{5}{7}$
- **4.** (b) $\frac{41}{49}$
- 5. (d) $\frac{1}{4}$
- 6. (c) All value of x
- **7.** (b) Unlike fractions
- **8.** (b) equal to 1
- **9.** (c) $1\frac{3}{9}$
- 10. (c) unit fraction
- **11.** (b) 24

- 12. (c) Fraction
- **13.** (c) $\frac{17}{20}$
- **14.** (c) $\frac{5}{18}$
- **15.** (c) $\frac{2}{3}$

Match The Following:

	Column I	-	Column II
1.		D.	4 5
2.		A.	<u>5</u> 9
3.		В.	$\frac{1}{2}$
4.		C.	$\frac{1}{3}$

Fill in the blanks:

- 1. $\frac{1}{2}$ of it is **18**.
- 2. $\frac{2}{3}$ of it is **24**.
- 3. If I make a bench of 20 small boxes, the fraction becomes $\frac{5}{9}$.
- 4. $\underline{30}$ boxes are required if fraction is $\frac{5}{6}$.

True /False:

- **1.** True
- **2.** True

- 3. False
- 4. False

Very Short Answer:

$$\frac{16}{5} - \frac{7}{5} = \frac{16-7}{5} = \frac{9}{5} = 1\frac{4}{5}$$

2. $\frac{3}{4}$ means 3 parts out of 4 parts.

So, colour 3 parts out of 4 parts given.

3.
$$\frac{3}{5} = \frac{3 \times 9}{5 \times 9} = \frac{27}{45}$$

4.
$$(a)\frac{8}{6} = \frac{8 \div 2}{6 \div 2} = \frac{4}{3}$$

(b)
$$\frac{44}{72} = \frac{44 \div 2}{72 \div 2} = \frac{22 \div 2}{36 \div 2} = \frac{11}{18}$$

5.
$$\frac{19}{6} = 9 \div 6$$

$$\therefore \frac{19}{6} = 3\frac{1}{6}$$

6. $\frac{10}{10}$ is 1 whole, which can be shown by the point 1.

7.

		**	
Fraction in standard forn	Numerator	Denominator	Diagrammatic Representatio
$\frac{6}{7} \frac{6}{7}$	84	98 98	
$\left[\frac{5}{6}\right]\left[\frac{5}{6}\right]$	5	6	
$\frac{9}{5} = 1\frac{4}{5} \frac{9}{5} = 1\frac{4}{5}$	18 18	10	

a.
$$\frac{6}{7} \cdot \frac{6}{7} = \frac{6 \times 14}{7 \times 14} = \frac{84}{\boxed{98}} \cdot \frac{6 \times 14}{7 \times 14} = \frac{84}{\boxed{98}} \cdot b. \boxed{\frac{5}{6}} = \frac{5 \times 1}{6 \times 1} = \frac{5}{6} \cdot \boxed{\frac{5}{6}} = \frac{5 \times 1}{6 \times 1} = \frac{5}{6} \cdot c.$$

$$\frac{9}{5} = \frac{9 \times 2}{5 \times 2} = \frac{\boxed{18}}{10} \cdot \frac{9}{5} = \frac{9 \times 2}{5 \times 2} = \frac{\boxed{18}}{10}$$

8.

Point A represents 1

Point C represents $\frac{3}{5}$

- **9.** (a) Shaded portion represents $\frac{1}{4}$
 - (b) Shaded portion represents $\frac{2}{6}$
- **10.** Natural numbers from 1 to 15 are 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 and 15 Prime numbers from 1 to 15 are 2, 3, 5, 7, 11, 13, i.e., 6 prime numbers.
 - ∴ Fraction of prime numbers = $\frac{6}{15}$

Short Answer:

1. Here, the numerators of all the fractions are same

$$\therefore$$
 Ascending order is $\frac{2}{11}, \frac{2}{9}, \frac{2}{7}, \frac{2}{5}, \frac{2}{3}$

2. (a) Proper fractions with denominator 7 are: $\frac{2}{7}$, $\frac{3}{7}$ and $\frac{5}{7}$ Improper fractions with denominator 7 are: $\frac{9}{7}$, $\frac{11}{7}$ and $\frac{13}{6}$

(b) Proper fractions with numerator 9 are: $\frac{9}{11}$ and $\frac{9}{17}$ Improper fractions with numerator 9 are: $\frac{9}{2}$ and $\frac{9}{15}$

3.

(a)
$$\frac{4}{5}$$
 and $\frac{5}{6}$

LCM of 5 and 6 = 30

$$\frac{4}{5} = \frac{4 \times 6}{5 \times 6} = \frac{24}{30}$$
and
$$\frac{5}{6} = \frac{5 \times 5}{6 \times 5} = \frac{25}{30}$$
Here,
$$24 < 25 \Rightarrow \frac{24}{30} < \frac{25}{30}$$

$$\therefore \qquad \frac{4}{5} < \frac{5}{6}$$
(b) $\frac{3}{4}$ and $\frac{2}{5}$

LCM of 4 and 5 = 20
$$\therefore \qquad \frac{3}{4} = \frac{3 \times 5}{4 \times 5} = \frac{15}{20}$$
and
$$\frac{2}{5} = \frac{2 \times 4}{5 \times 4} = \frac{8}{20}$$
Here,
$$15 > 8 \Rightarrow \frac{15}{20} > \frac{8}{20}$$

$$\therefore \qquad \frac{3}{4} > \frac{2}{5}$$

4.

$$= 4 + \left(\frac{2 \times 5}{3 \times 5} + \frac{2 \times 3}{5 \times 3}\right) = 4 + \left(\frac{10}{15} + \frac{6}{15}\right)$$

$$= 4 + \frac{(10+6)}{15} = 4 + \frac{16}{15} = 4 + 1 + \frac{1}{15}$$

$$= 5 + \frac{1}{15} = 5\frac{1}{15}$$
Hence, $1\frac{2}{3} + 3\frac{2}{5} = 5\frac{1}{15}$

5.

MATHS

$$4\frac{1}{8} - 2\frac{3}{4} = \frac{(4 \times 8) + 1}{8} - \frac{(2 \times 4) + 3}{4} = \frac{32 + 1}{8} - \frac{8 + 3}{4}$$
$$= \frac{33}{8} - \frac{11}{4}$$

LCM of 8 and 4 is 8

$$\therefore \frac{33 \times 1}{8 \times 1} - \frac{11 \times 2}{4 \times 2} = \frac{33}{8} - \frac{22}{8}$$

$$= \frac{33 - 22}{8} = \frac{11}{8} = 1\frac{3}{8}$$
Hence, $4\frac{1}{8} - 2\frac{3}{4} = 1\frac{3}{8}$

6.

(a)
$$\frac{6}{7}$$
 $\prod \frac{5}{7}$

Here, denominators are same, i.e., 7 and 6 > 5

$$\therefore \quad \frac{6}{7} \quad \triangleright \quad \frac{5}{7}$$

(b)
$$\frac{10}{21} \prod \frac{10}{12}$$

Here, numerators are same, i.e., 10 and 21 > 12

$$\therefore \quad \frac{10}{21} \ \boxed{<} \ \frac{10}{12}$$

(c)
$$\frac{3}{7}$$
 $\boxed{}$ $\frac{3}{8}$

Here, numerators are same, i.e., 3 and 7 < 8

$$\therefore \quad \frac{3}{7} \, \geq \, \frac{3}{8}$$

Long Answer:

1.

We have
$$3\frac{3}{5}$$
, $2\frac{4}{7}$, $\frac{19}{6}$, $\frac{18}{8}$

$$3\frac{3}{5} = \frac{(3\times5)+3}{5} = \frac{15+3}{5} = \frac{18}{5}$$

$$2\frac{4}{7} = \frac{(2\times7)+4}{7} = \frac{14+4}{7} = \frac{18}{7}$$

Improper form of all the fractions are

$$\frac{18}{5}, \frac{18}{7}, \frac{19}{6} \text{ and } \frac{18}{8}$$

$$\frac{2 \mid 5, 7, 6, 8}{2 \mid 5, 7, 3, 4}$$

$$\frac{2 \mid 5, 7, 3, 4}{2 \mid 5, 7, 3, 2}$$

$$\frac{3 \mid 5, 7, 1, 1}{5 \mid 1, 7, 1, 1}$$

$$\frac{7 \mid 1, 1, 1, 1}{1, 1, 1, 1}$$

$$LCM = 2 \times 2 \times 2 \times 3 \times 5 \times 7 = 840$$

LCM of 5, 7, 6 and 8 = 840

Making the denominators same, we have

$$\frac{18}{5} = \frac{18 \times 168}{5 \times 168} = \frac{3024}{840} \qquad [\because 840 \div 5 = 168]$$

$$\frac{18}{7} = \frac{18 \times 120}{7 \times 120} = \frac{2160}{840} \qquad [\because 840 \div 7 = 120]$$

$$\frac{19}{6} = \frac{19 \times 140}{6 \times 140} = \frac{2660}{840} \qquad [\because 840 \div 6 = 140]$$

$$\frac{18}{8} = \frac{18 \times 105}{5 \times 105} = \frac{1890}{840} \qquad [\because 840 \div 8 = 105]$$

Here
$$\frac{3024}{840}$$
 or $\frac{18}{5}$ is the greatest fraction and $\frac{1890}{840}$ or $\frac{18}{8}$ is the smallest fraction.

Difference

$$= \frac{18}{5} - \frac{18}{8} = \frac{18 \times 8}{5 \times 8} - \frac{18 \times 5}{8 \times 5} = \frac{144}{40} - \frac{90}{40}$$
$$= \frac{54}{40} = \frac{27}{20}$$

Hence the required difference = $\frac{27}{20}$ or $1\frac{7}{20}$

2. Space of the wall painted by Simran = $\frac{2}{3}$

Space of the wall painted by Rahul = $\frac{1}{5}$

Total space painted by both =
$$\frac{2}{3} + \frac{1}{5}$$

= $\frac{2 \times 5}{3 \times 5} + \frac{1 \times 3}{5 \times 3} = \frac{10}{15} + \frac{3}{15} = \frac{10 + 3}{15} = \frac{13}{15}$

Unpainted space of the wall = $1 - \frac{13}{15}$

$$= \frac{1}{1} - \frac{13}{15} = \frac{1 \times 15}{1 \times 15} - \frac{13 \times 1}{15 \times 1}$$
$$= \frac{15}{15} - \frac{13}{15} = \frac{15 - 13}{15} = \frac{2}{15}$$

Hence $\frac{2}{15}$ th of the wall space is unpainted.

Assertion and Reason Answers:

- 1) a) Both A and R are true and R is the correct explanation of A
- 2) d) A is false but R is true

